
Finding the best suited autoencoder

for reducing model complexity

Kien Mai Ngoc*, Myunggwon Hwang*

Abstract

Basically, machine learning models use input data to produce results. Sometimes, the input data is too

complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data

preprocessing step for constructing a proper feature set to improve the performance of such models. One of

the most efficient methods for automating feature engineering is the autoencoder, which transforms the data

from its original space into a latent space. However certain factors, including the datasets, the machine

learning models, and the number of dimensions of the latent space (denoted by k), should be carefully

considered when using the autoencoder. In this study, we design a framework to compare two data

preprocessing approaches: with and without autoencoder and to observe the impact of these factors on

autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The

empirical results provide a perspective regarding the best suited autoencoder for these factors.

Keywords : Autoencoder | feature engineering | feature extraction | feature reduction | machine learning

INTRODUCTION

The performance of machine learning methods is

heavily dependent on the choice of data

representation (or features) in which they are

applied. For that reason, much of the actual effort in

deploying machine learning algorithms goes into the

design of preprocessing pipelines and data

transformations that result in a representation of the

data that can support effective machine learning [1].

The process of selecting and transforming the data

is referred to as feature engineering. A good feature

engineering measurement helps to choose the most

informative features and remove irrelevant features,

which results in higher accuracy and shorter

processing time [2,3]. Initially, feature engineering

is vital but labor-intensive [1] as it requires human

experts to select and transform the data.

Subsequently, many techniques have been

developed to automate the process. A popular

method is feature extraction.

The goal of feature extraction is to map the original

feature space to a space with smaller or equal

dimensions [2]. The reason is that sometimes, the

raw data is too complicated and may contain noise or

redundant information, which can make machine

learning models complex but return poor results.

Therefore, feature extraction attempts to find a

better representation of the raw data which can

reduce computation while maintaining or improving

the accuracy [2].

In particular, feature extraction obtains an entirely

new set of features from the pattern of the data. It

can be categorized into 2 main categories:

supervised and unsupervised methods. The

supervised methods consider the labels and classes

of data samples, whereas the unsupervised methods

are based on the variation and pattern of the data [2].

Among various methods for feature reduction, this

study focuses on the autoencoder, which makes use

of neural networks to extract useful information for

building classifiers or other predictors. The goal of

* University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.

* Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Yuseong-gu, Daejeon, 34141,

Korea.

* This work was supported by Korea Institute of Science and Technology Information (KISTI).

Manuscript : 2021. 06. 23

Revised : 2021. 07. 21

Confirmation of Publication : 2021. 07. 22

Corresponding Author: Myunggwon Hwang,

e-mail: mgh@kisti.re.kr

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2021.10.3.9

2021년 09월 스마트미디어저널 9

the autoencoder is to learn a mapping from high-

dimensional observations to a lower-dimensional

representation space (also called latent space), such

that the original observations can be reconstructed

approximately from the lower-dimensional

representation [3]. The lower-dimensional

representation of the data is then used as the input

for machine learning models rather than the original

one.

Some factors should be considered when using an

autoencoder to preprocess the data. These include

the dataset, the models applied to the data, and the

number of dimensions of latent space (denoted by

�). In this study, our methodology involves designing

a framework to compare two data preprocessing

approaches: with and without autoencoder and to

observe the impact of these factors on autoencoder.

We first provide a survey of several types of

autoencoders and then conducts experiments using

those types for feature extraction. Concretely, we

use different types of autoencoders and values of �

to extract features from various datasets.

Subsequently, some types of classifiers are

employed to classify the extracted data into the

corresponding classes. The accuracy of the

classifier is used to assess which autoencoder shows

the best performance on which �, which data, and

which classifiers.

In the following sections, we provide an overview

of the autoencoder and the classifier. We then

present our methodology and experimental results.

From the results acquired, we discuss which

autoencoder is best suited for each dataset.

For simplicity, some notations should be defined.

We denote � as the input vectors, and � as the

latent code vectors which is the information

extracted by the autoencoder.

AUTOENCODER

2.1. Base autoencoder

The concept of autoencoders has been a part of the

historical landscape of neural networks for decades.

Traditionally, autoencoders have been used for

dimensionality reduction or feature learning.

Recently, theoretical connections between

autoencoders and latent variable models have

brought autoencoders to the forefront of generative

modeling [4].

In feature reduction, autoencoder, which makes use

of neural networks, is an unsupervised feature

extraction method. The form of an autoencoder

consists of an encoder and a decoder having hidden

layers. The input is fed to the encoder to produce

latent code, and the output is extracted from the

latent code by the decoder. A conventional

autoencoder attempts to minimize the discrepancy

between the input and the decoded output, or in other

words, to learn an identity function. Through training,

the autoencoder is expected to discover a more

efficient and compressed representation of the data

(presented by the latent code). Once the network is

trained, the decoder part is discarded, and the output

of the innermost hidden layer is used for feature

extraction from the input [2].

Recent advances in autoencoder try to apply prior

knowledge on the latent space to learn useful

representations of the data [3]. We shall explore

these types of autoencoders in the following

subsection.

2.2. Denoising Autoencoder (DAE)

The traditional autoencoder faces the risk of

overfitting. As the autoencoder learns the identity

function, if the encoder and decoder are allowed too

much capacity (in simple terms, a model's capacity

is its ability to fit a wide variety of functions [4]), the

autoencoder can learn to perform the copy task

without extracting useful information regarding the

distribution of the data.

To avoid this problem, the DAE [7,8] proposed a

modification to the basic autoencoder. The input is

partially corrupted by adding noise or masking it in a

stochastic manner. Specifically, a fixed proportion of

input dimensions are selected randomly, and their

values are forced to 0. Next, the model is trained to

recover the original input (not the corrupted one).

In our experiments, the DAE models have hidden

layers 1000-500-250-�-250-500-1000 and the

corruption proportion of 0.1 for the MNIST and

Fashion MNIST datasets [5], and 0.2 for the Cifar10

dataset (the corruption proportion of 0.1, 0.2, and 0.5

give similar performance).

2.3. Variational Autoencoder (VAE)

VAEs have shown promise in generating many

kinds of complicated data, including handwritten

digits [9,10], faces [9,11,12], house numbers

[13,14], segmentation [6], predicting the future

from static images [7], and removing out-of-

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132210 2021년 09월 스마트미디어저널

distribution samples [8]. The difference of the VAE

is that instead of mapping the input into a fixed

vector of latent space, we map it into a distribution.

VAEs [9,12] aim to learn a parametric latent variable

model by maximizing the marginal log-likelihood of

the training data [3]. We denote the prior distribution

of the latent space as �(�) , and the posterior

distribution learned by the autoencoder model as

��(�) . We also denote the distribution of the

reconstruction of the input from latent code as

�(�|�).

The loss function is the evidence lower bound

(ELBO), which is expressed as follows:

���� = − log �(�|�) + ��(��(�)|�(�)) (1)

In the first term of the loss function, we want to

maximize the probability of reconstruction. In the

second term, we can use the Kullback-Leibler (KL)

divergence to quantify the distance between the

prior and posterior distributions of the latent space,

which forces the posterior distribution to be close to

the prior distribution. The prior distribution is usually

the standard normal distribution �(�)~�(0, 1).

The training steps require sampling � ~ ��(�)

(because the input is reconstructed from the latent

code �, and not the parameters of the distribution),

which is a stochastic process and can not be

backpropagated. To make it trainable, the sampling

can be replaced with "parameterization trick"

described by Kingma et al. [9].

Our experiments use a model similar to that

presented by Doersch [10]. The autoencoders have

hidden layers 1000-500-250-�-250-500-1000.

We also use convolutional layers in the network,

which is referred to as convolutional variational

autoencoder (CVAE), presented in the next

subsection.

2.4. Info Variational Autoencoder (IVAE)

Kim and Mnih [11], Chen et al. [12], and Zhao et

al. [13] all proposed methods regarding mutual

information of � and �. According to Zhao et al.

[13], the KL divergence in equation (1) has two

problems: uninformative latent code and variance

over-estimation in the feature space. Therefore,

they use maximum mean discrepancy (MMD) [14]

instead.

MMD is based on the idea that two distributions are

identical if and only if all their moments are the same.

Therefore, we can define a divergence by measuring

the difference between the moments of two

distributions �(�) and �(�) . It can be efficiently

implemented using a kernel trick [13]. Using MMD

in the IVAE will maximize the mutual information

between the input � and the latent code �.

�����(�) � �(�)� = ��(�),�(��)[�(�, ��)]

− 2��(�),�(��)[�(�, ��)]

+ ��(�),�(��)[�(�, ��)]

(2)

where �(�, ��) is any universal kernel. A kernel can

be intuitively interpreted as a function that measures

the “similarity” of two samples. It has a large value

when two samples are similar, and a small value

when they are different. ��� = 0 if and only if � =

�.

Our IVAE models use two convolution layers with

64 and 128 filters, respectively, one hidden layer

with 1024 units, and latent space with � units for the

encoder and the reverse structure for the decoder.

To assess the effect of MMD and network

architecture, we also use a VAE with the same

architecture as the IVAE model, while keeping its KL

loss function. We refer to this model as the

convolutional variational autoencoder (CVAE).

2.5. Adversarial Autoencoder (AAE)

AAEs [15] turn a standard autoencoder into a

generative model by imposing a prior distribution

�(�) on the latent variables by penalizing some

statistical divergence between �(�) and ��(�) using

a generative adversarial network (GAN) [3].

In addition to minimizing the reconstruction

discrepancy, these autoencoders have an additional

discriminator part to ensure that the encoded latent

codes are similar to samples obtained from the prior

distribution. As in the VAE, the prior distribution is

usually the standard normal distribution. In all the

experiments conducted by Makhzani et al. [15], the

encoder and decoder are considered to be

deterministic.

In our experiments, the autoencoder has hidden

layers 1000-1000-� -1000-1000, whereas the

discriminator network has layers �-1000-1000-1

(the last layer indicates whether the latent code is

from the encoder or sampled from the prior

distribution).

Generally, autoencoders with different

architectures and loss functions can have different

impacts on the extracted data. To assess these

impacts, we focus on the performance of several

classifiers using the extracted data. The classifiers

are presented in the next section.

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 11

CLASSIFIERS

Several classifiers are used for experiments to

magnify the effectiveness of feature extraction using

autoencoder. They include Gaussian Naive Bayes,

support vector machine, random forest, and neural

network. We benchmark the performance of the

classifiers trained on the original dataset and the

extracted one.

3.1. Gaussian Naïve Bayes

Naive Bayes classifier is a simple probabilistic

classifier based on the Bayes theorem. Naive Bayes

considers each feature variable as an independent

variable [16]. It involves the prior and posterior

probability calculation of the classes in the dataset.

The prior probability of an instance � belonging to

a class � is expressed as follows:

�(� = �) =
������ �� ��������� �� ����� �

����� ������ �� ���������
(3)

The posterior probability of the occurrence of an

instance �, given class � is computed as follows:

�(� | � = �) = � �(�� = �� | � = �)

�

���

(4)

where �� is the feature variable and � is the class

label.

The classification is performed by applying the

Bayes theorem to calculate the probability of a

particular instance � = (��, … , ��) belonging to a

class.

�(� = � | �� = ��, … , �� = ��)

=
�(� = �) ∗ �(� | � = �)

�(�)

=
�(� = �) ∗ ∏ �(�� = �� | � = �)�

���

∑ ��� = ��� ∗ ∏ �(�� = �� | � = ��)�
����

(5)

We can just compare the numerator for each class

as the denominator is the same for all classes. The

class of an instance � = (��, ��, … , ��) is given by

argmax
�

�(� = �) ∗ � �(�� = �� | � = �)

�

���

(6)

When dealing with continuous data, a typical

assumption is that the continuous values associated

with each class are distributed according to a

Gaussian distribution. The training data are

segmented by class, and the mean and variance of

each class are calculated [16]. Therefore, the

following formula can be used to estimate the

probabilities of a continuous dataset.

�(�� = �� | � = ��) =
1

�2����

�
�

��������
�

����
� (7)

where ��� and ��� are the mean and standard

deviation of variable �� for class ��.

3.2. Support Vector Machine

Support vector machine (SVM) [17] is a

classification approach. It constructs a maximum

marginal hyperplane in a multidimensional space to

separate different classes. There are some data

points that are closest to the hyperplane and

contribute to the construction of the hyperplane.

They are called support vectors.

Initially, the boundary between two classes is linear.

However, in practice, we are sometimes faced with

non-linear class boundaries. In such cases, we could

address the problem by enlarging the feature space

using quadratic, cubic, and even higher-order

polynomial functions of the features [18]. SVM uses

a technique called the kernel trick. Here, the kernel

takes a low-dimensional input space and transforms

it into a higher dimensional space. In other words,

the kernel trick converts a nonseparable problem to

separable problems by adding more dimensions to

the input space.

In this study, we use the radial basis function kernel

(rbf), which has the formula:

�(�� , ��
�) = exp �−� �(��� − ����)�

�

���

 � (8)

where � is the kernel coefficient, ranging from 0

to 1. It is set to
�

�_��������
∗ �. ���() by default.

3.3. Random forest

Random forests [19] are an ensemble model made

of decision trees. Several decision trees are built on

bootstrapped training samples that are generated by

taking repeated samples from the (single) training

dataset. Each time a split in a tree is considered, a

random sample of � features is chosen as split

candidates from the full set of � features. The split

can use only one of those � features [18]. By

combining hundreds or even thousands of trees, a

random forest will usually outperform the individual

tree.

In classification, for a given test observation, we can

record the class predicted by each of the trees and

take a majority vote. The overall prediction is the

most commonly occurring class among the

predictions [18].

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132212 2021년 09월 스마트미디어저널

We use 100 classifier trees for each random forest

in this study.

3.4. Neural networks

In this study, we employ a convolutional neural

network as the data are images. Convolution

networks combine three architectural ideas to

ensure some degree of shift, scale, and distortion

invariance: local receptive fields, shared weights (or

weight replication), and spatial or temporal sub-

sampling [20].

The input layer receives images that are

approximately size normalized and centered. Each

unit in a layer receives inputs from a set of units

located in a small neighborhood in the previous layer.

With local receptive fields, neurons can extract

elementary visual features such as oriented edges,

endpoints, and corners, or similar features in other

signals, such as speech spectrograms. These

features are then combined by the subsequent layers

to detect higher-order features. Units in a layer are

organized in planes within which all units share the

same set of weights. The set of outputs of the units

in such a plane is called a feature map [20].

Once a feature has been detected, its exact location

becomes less important. Only its approximate

position relative to other features is relevant. A

simple way to reduce the precision with which the

position of distinctive features is encoded in a

feature map is to reduce the spatial resolution of the

feature map. This can be achieved with a so-called

sub-sampling layers which performs a local

averaging and a sub-sampling, reducing the

resolution of the feature map, and reducing the

sensitivity of the output to shifts and distortions [20].

The architecture used in this study follows the

LeNet-5 architecture presented in the work of

LeCun et al. [20]. It comprises seven layers, not

counting the input layer. There are two convolutional

layers (with 6 and 16 5x5-filters, respectively)

followed by an average sub-sampling layer each.

After that, there are one convolutional layer with 120

5x5-filters and two fully connected layers with 84

and 10 units. The activation function is rectified

linear unit (ReLU) for all layers, except softmax for

the output layer because we perform classification

on this layer. The loss function is the sparse

categorical cross-entropy.

METHODOLOGY

As mentioned earlier, in this study, we use

empirical results to assess the factors affecting the

autoencoder, including the datasets, the machine

learning models, and the number of dimensions of the

latent space (denoted by �). Hence, our method

involves designing a framework for conducting

experiments and analyzing the acquired results.

The problem in this study is image classification.

We employ popular machine learning algorithms to

classify images from several datasets into their

corresponding categories. The image or data can be

preprocessed in advance by the autoencoders.

The goal of using autoencoder for feature

extraction is to reduce the dimensions of the feature

space while retaining useful information for building

the classifiers. Therefore, we compared two data

preprocessing approaches for training classifiers:

without and with autoencoder. In the latter one, we

used different combinations of autoencoders,

numbers of latent dimensions, and classifiers on

different datasets to provide a comprehensive

comparison of these factors.

In the first approach, we employed the classifier

models mentioned in Section 3 to classify the original

datasets without any preprocessing steps. The

performance of these classifiers in terms of

accuracy and running time was considered as the

baseline for further comparison.

In the second approach, we conducted experiments

using autoencoders for preprocessing data. As

shown in Figure 1, the overall process consists of

two main steps: data preprocessing, and model

Fig. 1. Process of experiments using autoencoders in the data preprocessing step.

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 13

training and inference. Each dataset consists of a

training and test set. In the data preprocessing step,

the original training set was used for training the

autoencoders in an unsupervised manner. For each

dataset, we ran different types of autoencoders and

different numbers of latent space dimensions � .

After being trained, the autoencoders transformed

the original training and test datasets into extracted

training and test datasets. In the model training and

inference step, these two extracted datasets,

including labels, were then used as the training and

test set for fitting the classifiers and making

predictions, respectively. The classifiers included all

types mentioned in Section 3 apart from the neural

network because its architecture is specified for the

original data.

Subsequently, we compared the accuracy and

elapsed time of the classification between the two

approaches as well as among the values of the latent

space dimension �, the classifiers, and the datasets

in the same approach to evaluate the efficiency of the

autoencoders. We also compared different network

architectures and loss functions used in

autoencoders. We finally provided further

suggestions regarding the use of an autoencoder for

feature extraction.

The main effort is not to maximize the performance

of the autoencoders. We used a similar structure and

hyper-parameters for each type of autoencoder to

observe their performance regarding different

combinations of � , classifiers, and datasets. All

models were optimized by Adam optimization [21]

(Kingma & Ba, 2015). All experiments were

implemented using Tensorflow1.

EXPERIMENTS

This section presents the experimental results. We

first introduce datasets used for experiments in

subsection 5.1. The baseline performances of the

first approach are shown in subsection 5.2. The

results of the approach using autoencoders are

presented in subsection 5.3. A comparison regarding

convolution and info variation autoencoders is

included in subsection 5.4.

1 The source code is available on Github at

https://github.com/KienMN/Autoencoder-Experiments.

5.1. Datasets

The datasets used in this study include: MNIST

[22], Fashion MNIST [23], and Cifar-10 [24].

· MNIST is a dataset of handwritten digits. It has

a training set of 60,000 examples and a test set

of 10,000 examples. Each example is a 28x28

grayscale image associated with a label of a digit.

· Fashion MNIST is a dataset of Zalando's article

images consisting of a training set of 60,000

examples and a test set of 10,000 examples.

Each example is a 28x28 grayscale image

associated with a label from 10 classes.

· The Cifar-10 dataset consists of 60,000

32x32 color images in 10 classes with 6,000

images per class. There are 50,000 training

images and 10,000 test images.

Table 1 summarizes the information regarding the

datasets.

Table 1. Summary of the datasets

Summary MNIST Fashion

MNIST

Cifar-10

Training

examples

60,000 60,000 50,000

Test

examples

10,000 10,000 10,000

Image size 28x28 28x28 32x32

Image type gray Gray color

Number of

channels

1 1 3

The reason for selecting these datasets is that they

are popular in the field of machine learning, they

require little domain knowledge, and it is difficult to

extract features manually because of their large

number of dimensions. One special point is that they

are all image data. Therefore, they might be suitable

for some network architecture.

5.2. Baseline models

We ran the neural network and other classifiers,

including Gaussian Naive Bayes, SVM, and Random

Forest, on the original dataset. The accuracy of

these models was considered as the baseline for the

benchmark. The results are shown in Table 2.

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132214 2021년 09월 스마트미디어저널

Table 2. Classification accuracy (%) of the

baseline models

Models MNIST Fashion

MNIST

Cifar-

10

Neural

network

98.31 86.78 56.52

GaussianNB 55.58 58.56 29.76

SVM 97.92 88.29 54.36

Random

forest

97 87.84 46.85

As shown in Table 2, the accuracy of the Gaussian

NB classifiers is relatively low over all datasets.

Interestingly, without data preprocessing, SVM and

random forest classifiers performed nearly as well

as neural network classifiers.

Table 3. Running time (s) of the baseline models

Models MNIST Fashion

MNIST

Cifar-10

Neural

network

45.47 45.36 45.47

GaussianNB 0.83 0.77 3.19

SVM 580.35 867.79 10632.66

Random

forest

28.04 62.12 172.57

According to Table 3, the running time of the neural

network, Gaussian NB, and random forest classifiers

is significantly lower than that of SVM. The elapsed

time of the neural network is likely to depend on the

architecture of the network as we use similar

architectures for all datasets. This may be because

of the implementation and optimization of the deep

learning library. The running time of other classifiers

increases when the dataset is more sophisticated.

5.3. Using autoencoders

We used autoencoders for feature extraction from

the original dataset before fitting the data into the

classifiers. The accuracy and running time of the

classification when applying the autoencoder are

presented in Figures 2 - 7.

Figures 2 to 7 show the accuracy and the running

time (autoencoder and classifier) of the classification

on the test set of the MNIST, Fashion MNIST, and

Cifar-10 datasets, respectively, depending on the

number of latent space dimensions (�). The

horizontal axis represents the values of �, and the

vertical axis represents the accuracy or the running

time of the classification. Each line indicates the

metric of a model, which is a combination of an

autoencoder and a classifier, on the test set when

using the data extracted by the autoencoder. The

same color is used for the same type of autoencoder,

and the same line style is used for the same classifier.

GBM, SVM, and RF are shorthand for Gaussian NB,

support vector machine, and random forest. The

running time of the autoencoder is not considered

here because we consider autoencoder as a pre-

training step.

The first observation is the amount of reduced data.

The value of � is now below 30, which indicates that

the size of the encoded data is approximately 1% -

3% compared to that of the original data. As a result,

the complexity of the models in terms of running

time and space will decrease significantly, as

presented below.

Fig. 2. Accuracy of classification on the MNIST dataset

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 15

Fig. 3. Accuracy of classification on the Fashion MNIST dataset

Fig. 4. Accuracy of classification on the Cifar-10 dataset

Fig. 5. Running time of classification on the MNIST dataset

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132216 2021년 09월 스마트미디어저널

As shown in Figure 2, overall, the usage of the

autoencoder enhances the performance of the

Gaussian NB classifier from 55.58% to at least over

80% while maintaining the performance of the SVM

and random forest on significantly low

dimensionality data. The accuracy of the classifiers

increases gently with the increase in � . The

performance of the IVAE is the best among all

autoencoders. Turning to the running time, as shown

in Figure 5, the elapsed time of the SVM drops

dramatically from 580s when running on the entire

data to under 25s when running on the extracted data.

One interesting thing to note is that there is a small

leap in the performance of the AAE when the value

of � is 10. Correspondingly, the running time of the

SVM using data extracted by the AAE decreases

sharply when the value of � is 10. In this case, the

extracted data are well separated in the space, so

that the SVM can assess fewer support vectors than

before.

According to Figures 3 and 6, on the Fashion

MNIST dataset, similar to the MNIST dataset,

autoencoders help to improve the accuracy of the

Gaussian NB classifier from 58.56% to over 70%.

Using the autoencoder still helps to reduce the

running time of the SVM from over 850s to under

60s and that of random forest from over 60s to under

25s at the cost of a small reduction in the accuracy

(by 1 - 5% and 3 - 5%, respectively). The increase

in � gives a small boost to the result, but gradually,

Fig. 6. Running time of classification on the Fashion MNIST dataset

Fig. 7. Running time of classification on the Cifar-10 dataset

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 17

the effectiveness becomes insignificant. The IVAE

still demonstrates the best performance.

On the Cifar-10 dataset, as shown in Figures 4 and

7, only the VAE and IVAE help to improve the

accuracy of the Gaussian NB but insignificantly

(approximately 5%). For the IVAE, increasing �

increases the accuracy. Apart from that, increasing

� has little effect on the accuracy of the classifiers.

The running time of the SVM and random forest can

be reduced by using extracted data from the

autoencoder (from over 10,500s down to under

200s and near 180s to around 25s, respectively) at

the cost of reduction in accuracy (at least for 2%

both).

In all experiments, the autoencoder approach could

not beat the neural network approach in terms

of accuracy. The combination of the IVAE and the

SVM demonstrated the best performance among the

combinations. The reasons are clarified in the

suggestion section.

Generally, the dataset has some impacts on the

autoencoder model. In all datasets, the IVAE

performed well because of the convolution layers in

its architecture, which is suitable for image data. In

a more sophisticated dataset (Cifar-10), the DAE

and the AAE did not perform well because each

image has three channels. Therefore, it is not simple

to treat an image as a large input vector for a dense

layer. Surprisingly, although it contained only dense

layers, the VAE performed better than the DAE and

the AAE on Cifar-10 dataset.

Fig. 8. Accuracy of classification on the MNIST dataset

Fig. 9. Accuracy of classification on the Fashion MNIST dataset

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132218 2021년 09월 스마트미디어저널

5.4. Convolution variational autoencoder versus

Info variational autoencoder

As mentioned in subsection 2.4, to assess the

efficiency of the network architecture and loss

function, we compare the performance of three

types of autoencoders. The first one is VAE, which

contains only dense layers (fully connected layers)

and uses the KL loss function shown in equation (1).

Using the same loss function as the VAE, a

Convolutional variational autoencoder (CVAE)

employs additional convolutional layers that show an

advantage on the image data. The last one, which is

the IVAE, has the same architecture as the CVAE.

However, it makes use of the MMD loss function

expressed in equation (2). A summary of these

three types of autoencoders is presented in Table 4,

and the result is presented in Figures 8 - 10.

Table 4. Summary of the VAE, CVAE, and IVAE

Autoencoders Network

architecture

Loss

function

VAE Dense layers KL

CVAE Convolutional

and Dense

layers

KL

IVAE Convolutional

and Dense

layers

MMD

Figures 8 to 10 illustrate the accuracy of

classification on the data extracted by different

types of autoencoders, similar to Figures 2 to 4. The

autoencoders include the VAE, CVAE, and IVAE.

Overall, the performance of the IVAE is higher than

that of the CVAE. In most cases, the orange line is

higher than the blue one of the same line style. This

indicates that its MMD loss function forces the

autoencoder to encode more useful information from

the input to the latent code than the KL loss function.

Meanwhile, the CVAE performs better than the

VAE. The reason is that the convolutional layers

allow the autoencoder to detect and extract more

useful features from the image dataset compared to

the dense layers.

SUGGESTIONS

From the results acquired, we present some

suggestions when applying autoencoder for feature

extraction.

Autoencoder can be used to reduce the complexity

of data, hence reducing the elapsed time and

complexity of the machine learning model while

increasing or maintaining its performance. It can be

used in a pre-training step for preprocessing data

before building machine learning models.

When using neural networks for machine learning

tasks, there may be no need to use autoencoder for

extracting features. Because deep model has a high

capacity, which allows it to better understand

features and data. As a result, feature extraction is

somehow already included in the deep model, and it

is likely to perform tasks well without data

preprocessing. Hence, the effort here should focus

on designing a powerful architecture to solve these

problems.

Fig. 10. Accuracy of classification on the Cifar-10 dataset

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 19

The increase in � allows more information to be

encoded in the latent code. Therefore, the machine

learning model using extracted data is likely to

perform better. As shown in Figures 2 and 5, there

are some points of � at which the data is encoded in

the latent space so well that it makes the model

remarkably efficient. However, the encoded

information becomes saturated gradually. At that

point, increasing � has little effect on the

performance of the model.

There are two reasons why the IVAE works well in

our experiments. The first reason is the MMD object

function, which is described by Zhao et al. [13]. The

second reason is the architecture of the network.

Specifically, it employs convolutional layers in the

autoencoder, which show an advantage on the image

data, as shown in Section 5.4.

CONCLUSIONS

Autoencoders as well as other feature reduction

methods are used in feature engineering to extract

useful information from the raw data. They can

minimize human effort and help to automate the data

preprocessing process. Moreover, the information

extracted by the autoencoder can then be used to

improve or maintain the performance and reduce the

complexity of machine learning models.

In this study, we reviewed feature extraction

methods and autoencoders. Subsequently, we

discussed different types of autoencoders and

classifier. We then presented our methodology and

conducted experiments using autoencoders with

different values of � and classifiers on different

datasets. Subsequently, we visualized and analyzed

the results to assess the impact of these factors on

the autoencoder and suggested the application of

autoencoder for feature extraction.

For future research, it is worth investigating the

behavior of the autoencoder to propose a novel

autoencoder model. Additionally, we would like to

develop an end-to-end approach for finding the

best suited autoencoder for each specific task in

which we no longer need to consider intermediate

steps and only focus on the task.

REFERENCES

[1] Y. Bengio, A. Courville and P.

Vincent, "Representation learning: A

review and new perspectives," IEEE
transactions on pattern analysis and
machine intelligence, vol. 35, no. 8,

p. 1798-1828, Aug., 2013

[2] B. Ghojogh, M. N. Samad, S. A.

Mashhadi, T. Kapoor, W. Ali, et al.,

"Feature selection and feature

extraction in pattern analysis: A

literature review," arXiv preprint
arXiv:1905.02845, May, 2019

[3] M. Tschannen, O. Bachem and M.

Lucic, "Recent advances in

autoencoder-based representation

learning," arXiv preprint
arXiv:1812.05069, Dec., 2018

[4] I. Goodfellow, Y. Bengio and A.

Courville, Deep Learning, MIT

Press, 2016

[5] P. Vincent, H. Larochelle, Y. Bengio

and P.-A. Manzagol, "Extracting and

composing robust features with

denoising autoencoders,"

Proceedings of the 25th
International Conference on Machine
Learning, pp. 1096-1103, Helsinki,

Finland, Jul., 2008

[6] K. Sohn, X. Yan and H. Lee,

"Learning Structured Output

Representation Using Deep

Conditional Generative Models,"

Proceedings of the 28th
International Conference on Neural

Information Processing Systems,

vol. 2, pp. 3483-3491, Dec., 2015

[7] J. Walker, C. Doersch, A. Gupta and

M. Hebert, "An Uncertain Future:

Forecasting from Static Images

Using Variational Autoencoders,"

eprint arXiv:1606.07873, Jun.,

2016.

[8] T.-V. Dang, H.-T. Vo, G.-H. Yu,

J.-H. Lee, H.-T. Nguyen and J.-Y.

Kim, "Removing Out-Of-

Distribution Samples on

Classification Task," Smart Media
Journal, vol. 9, no. 3, pp. 80-89,

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132220 2021년 09월 스마트미디어저널

Sep., 2020

[9] D. P. Kingma and M. Welling, "Auto-

encoding variational bayes," arXiv
preprint arXiv:1312.6114, Dec.,

2013

[10] C. Doersch, "Tutorial on variational

autoencoders," arXiv preprint
arXiv:1606.05908, Jun., 2016

[11] H. Kim and A. Mnih, "Disentangling

by Factorising," Proceedings of the
35th International Conference on
Machine Learning, vol. 80, pp.

2649-2658, Stockholmsmässan,

Sweden, Jul., 2018

[12] R. T. Q. Chen, X. Li, R. B. Grosse and

D. K. Duvenaud, "Isolating Sources

of Disentanglement in Variational

Autoencoders," NIPS'18:
Proceedings of the 32nd
International Conference on Neural
Information Processing Systems,

pp. 2615-2625, Dec., 2018

[13] S. Zhao, J. Song and S. Ermon,

"Infovae: Information maximizing

variational autoencoders," arXiv
preprint arXiv:1706.02262, Jun.,

2017

[14] A. Gretton, K. Borgwardt, M. J.

Rasch, B. Scholkopf and A. J. Smola,

"A Kernel Method for the Two-

Sample-Problem," Advances in

Neural Information Processing
Systems, vol. 19, pp. 513-520,

Dec., 2006.

[15] A. Makhzani, J. Shlens, N. Jaitly, I.

Goodfellow and B. Frey,

"Adversarial autoencoders," arXiv
preprint arXiv:1511.05644, Nov.,

2015.

[16] B. Gayathri and C. Sumathi, "An

automated technique using Gaussian

Naive Bayes classifier to classify

breast cancer," International Journal
of Computer Applications, vol. 148,

no. 6, pp. 16-21, 2016

[17] C. Cortes and V. Vapnik, "Support-

vector networks," Machine learning,
vol. 20, no. 3, pp. 273-297, Sep.,

1995.

[18] G. James, D. Witten, T. Hastie and R.

Tibshirani, An introduction to
statistical learning, Springer, 2013

[19] L. Breiman, "Random forests,"

Machine learning, vol. 45, no. 1, pp.

5-32, Oct.., 2001

[20] Y. LeCun, L. Bottou, Y. Bengio and P.

Haffner, "Gradient-based learning

applied to document recognition,"

Proceedings of the IEEE, vol. 86, no.

11, pp. 2278-2324, Nov., 1998

[21] D. P. Kingma and J. Ba, "Adam: A

Method for Stochastic Optimization,"

3rd International Conference on
Learning Representations(ICLR),

2015

[22] Y. LeCun, C. Cortes and C. Burges,

"MNIST handwritten digit database,"

ATT Labs, 2010

[23] H. Xiao, K. Rasul and R. Vollgraf,

"Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine

Learning Algorithms," CoRR, 2017

[24] A. Krizhevsky, "Learning multiple

layers of features from tiny images,"

Apr., 2009.

[25] Y. Bengio, E. Thibodeau-Laufer, G.

Alain and J. Yosinski, "Deep

Generative Stochastic Networks

Trainable by Backprop," ICML'14:
Proceedings of the 31st
International Conference on

International Conference on Machine
Learning, vol. 32, pp. 226-34, Jun.,

2014

[26] T. Salimans, D. P. Kingma and M.

Welling, "Markov Chain Monte Carlo

and Variational Inference: Bridging

the Gap," ICML'15: Proceedings of
the 32nd International Conference

on International Conference on
Machine Learning, vol. 37, pp.

1218-1226, Jul., 2015

[27] T. D. Kulkarni, W. F. Whitney, P.

Kohli and J. Tenenbaum, "Deep

Convolutional Inverse Graphics

Network," NIPS'15: Proceedings of
the 28th International Conference on

Neural Information Processing
Systems, vol. 2, pp. 2539-2547,

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-1322 2021년 09월 스마트미디어저널 21

Dec., 2015

[28] D. J. Rezende, S. Mohamed and D.

Wierstra, "Stochastic

Backpropagation and Approximate

Inference in Deep Generative

Models," Proceedings of the 31st
International Conference on Machine

Learning, vol. 32, no. 2, pp. 1278-

1286, Jun., 2014

[29] K. Gregor, I. Danihelka, A. Graves,

D. Rezende and D. Wierstra, "DRAW:

A Recurrent Neural Network For

Image Generation," Proceedings of
Machine Learning Research, vol. 37,

pp. 1462-1471, 2015.

[30] D. P. Kingma, D. J. Rezende, S.

Mohamed and M. Welling, "Semi-

Supervised Learning with Deep

Generative Models," NIPS'14:
Proceedings of the 27th
International Conference on Neural
Information Processing Systems,

vol. 2, pp. 3581-3589, Dec., 2014

[31] S. Pant, J. Kim and S. Lee, "A Fall

Detection Technique using Features

from Multiple Sliding Windows,"

Smart Media Journal, vol. 7, no. 4,

pp. 79-89, Dep., 2018

[32] T. D. Vu, H.-J. Yang, L. N. Do and

T. N. Thieu, "Classifying

Instantaneous Cognitive States from

fMRI using Discriminant based

Feature Selection and Adaboost,"

Smart Media Journal, vol. 5, no. 1,

pp. 30-37, Jan., 2016

Authors

Kien Mai Ngoc

He received the B.S. degree in

information technology from

University of Engineering and

Technology, Vietnam National

University, in 2019. He is a

Master student in Department of Data and HPC

Science at University of Science and

Technology (UST) and in Research Data and

Sharing Center at Korea Institute of Science

and Technology Information (KISTI).

Myunggwon Hwang

He received the B.S. degree in

computer engineering, the

M.S. degree in computer

science, and the Ph.D. degree

in computer engineering from

Chosun University. He is a senior researcher

in Center of Intelligent Infrastructure

Technology Research at Korea Institute of

Science and Technology Information (KISTI)

and a professor in Department of Data and HPC

Science at University of Science and

Technology (UST). His research focuses on

machine learning, text mining, training data

selection, and knowledge acquisition.

Smart Meadia Journal / Vol.10,No.3 / ISSN:2287-132222 2021년 09월 스마트미디어저널

