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Abstract

Basically, machine learning models use input data to produce results. Sometimes, the input data is too 

complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data 

preprocessing step for constructing a proper feature set to improve the performance of such models. One of 

the most efficient methods for automating feature engineering is the autoencoder, which transforms the data 

from its original space into a latent space. However certain factors, including the datasets, the machine 

learning models, and the number of dimensions of the latent space (denoted by k), should be carefully 

considered when using the autoencoder. In this study, we design a framework to compare two data 

preprocessing approaches: with and without autoencoder and to observe the impact of these factors on 

autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The 

empirical results provide a perspective regarding the best suited autoencoder for these factors.
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INTRODUCTION

The performance of machine learning methods is 

heavily dependent on the choice of data 

representation (or features) in which they are 

applied. For that reason, much of the actual effort in 

deploying machine learning algorithms goes into the 

design of preprocessing pipelines and data 

transformations that result in a representation of the 

data that can support effective machine learning [1].

The process of selecting and transforming the data 

is referred to as feature engineering. A good feature 

engineering measurement helps to choose the most 

informative features and remove irrelevant features,

which results in higher accuracy and shorter 

processing time [2,3]. Initially, feature engineering 

is vital but labor-intensive [1] as it requires human 

experts to select and transform the data. 

Subsequently, many techniques have been 

developed to automate the process. A popular 

method is feature extraction.

The goal of feature extraction is to map the original 

feature space to a space with smaller or equal 

dimensions [2]. The reason is that sometimes, the 

raw data is too complicated and may contain noise or 

redundant information, which can make machine 

learning models complex but return poor results. 

Therefore, feature extraction attempts to find a 

better representation of the raw data which can 

reduce computation while maintaining or improving 

the accuracy [2].

In particular, feature extraction obtains an entirely 

new set of features from the pattern of the data. It 

can be categorized into 2 main categories: 

supervised and unsupervised methods. The 

supervised methods consider the labels and classes 

of data samples, whereas the unsupervised methods 

are based on the variation and pattern of the data [2].

Among various methods for feature reduction, this 

study focuses on the autoencoder, which makes use 

of neural networks to extract useful information for 

building classifiers or other predictors. The goal of 
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the autoencoder is to learn a mapping from high-

dimensional observations to a lower-dimensional 

representation space (also called latent space), such 

that the original observations can be reconstructed 

approximately from the lower-dimensional 

representation [3]. The lower-dimensional 

representation of the data is then used as the input 

for machine learning models rather than the original 

one.

Some factors should be considered when using an 

autoencoder to preprocess the data. These include 

the dataset, the models applied to the data, and the 

number of dimensions of latent space (denoted by 

�). In this study, our methodology involves designing 

a framework to compare two data preprocessing 

approaches: with and without autoencoder and to 

observe the impact of these factors on autoencoder. 

We first provide a survey of several types of 

autoencoders and then conducts experiments using 

those types for feature extraction. Concretely, we 

use different types of autoencoders and values of �

to extract features from various datasets. 

Subsequently, some types of classifiers are 

employed to classify the extracted data into the 

corresponding classes. The accuracy of the 

classifier is used to assess which autoencoder shows 

the best performance on which �, which data, and 

which classifiers.

In the following sections, we provide an overview 

of the autoencoder and the classifier. We then 

present our methodology and experimental results. 

From the results acquired, we discuss which 

autoencoder is best suited for each dataset.

For simplicity, some notations should be defined. 

We denote � as the input vectors, and � as the 

latent code vectors which is the information 

extracted by the autoencoder.

AUTOENCODER

2.1. Base autoencoder

The concept of autoencoders has been a part of the 

historical landscape of neural networks for decades. 

Traditionally, autoencoders have been used for 

dimensionality reduction or feature learning. 

Recently, theoretical connections between 

autoencoders and latent variable models have 

brought autoencoders to the forefront of generative 

modeling [4].

In feature reduction, autoencoder, which makes use 

of neural networks, is an unsupervised feature 

extraction method. The form of an autoencoder 

consists of an encoder and a decoder having hidden 

layers. The input is fed to the encoder to produce 

latent code, and the output is extracted from the 

latent code by the decoder. A conventional 

autoencoder attempts to minimize the discrepancy 

between the input and the decoded output, or in other 

words, to learn an identity function. Through training, 

the autoencoder is expected to discover a more 

efficient and compressed representation of the data 

(presented by the latent code). Once the network is 

trained, the decoder part is discarded, and the output 

of the innermost hidden layer is used for feature 

extraction from the input [2].

Recent advances in autoencoder try to apply prior 

knowledge on the latent space to learn useful 

representations of the data [3]. We shall explore 

these types of autoencoders in the following 

subsection.

2.2. Denoising Autoencoder (DAE)

The traditional autoencoder faces the risk of 

overfitting. As the autoencoder learns the identity 

function, if the encoder and decoder are allowed too 

much capacity (in simple terms, a model's capacity 

is its ability to fit a wide variety of functions [4]), the 

autoencoder can learn to perform the copy task 

without extracting useful information regarding the 

distribution of the data.

To avoid this problem, the DAE [7,8] proposed a 

modification to the basic autoencoder. The input is 

partially corrupted by adding noise or masking it in a 

stochastic manner. Specifically, a fixed proportion of 

input dimensions are selected randomly, and their 

values are forced to 0. Next, the model is trained to 

recover the original input (not the corrupted one).

In our experiments, the DAE models have hidden 

layers 1000-500-250-�-250-500-1000 and the 

corruption proportion of 0.1 for the MNIST and 

Fashion MNIST datasets [5], and 0.2 for the Cifar10 

dataset (the corruption proportion of 0.1, 0.2, and 0.5 

give similar performance).

2.3. Variational Autoencoder (VAE)

VAEs have shown promise in generating many 

kinds of complicated data, including handwritten 

digits [9,10], faces [9,11,12], house numbers 

[13,14], segmentation [6], predicting the future 

from static images [7], and removing out-of-
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distribution samples [8]. The difference of the VAE 

is that instead of mapping the input into a fixed 

vector of latent space, we map it into a distribution. 

VAEs [9,12] aim to learn a parametric latent variable 

model by maximizing the marginal log-likelihood of 

the training data [3]. We denote the prior distribution 

of the latent space as �(�) , and the posterior 

distribution learned by the autoencoder model as 

��(�) . We also denote the distribution of the 

reconstruction of the input from latent code as 

�(�|�).

The loss function is the evidence lower bound 

(ELBO), which is expressed as follows:

���� = − log �(�|�) + ��(��(�)|�(�)) (1)

In the first term of the loss function, we want to 

maximize the probability of reconstruction. In the 

second term, we can use the Kullback-Leibler (KL) 

divergence to quantify the distance between the 

prior and posterior distributions of the latent space, 

which forces the posterior distribution to be close to 

the prior distribution. The prior distribution is usually 

the standard normal distribution �(�)~�(0, 1).

The training steps require sampling � ~ ��(�)

(because the input is reconstructed from the latent 

code �, and not the parameters of the distribution), 

which is a stochastic process and can not be 

backpropagated. To make it trainable, the sampling 

can be replaced with "parameterization trick" 

described by Kingma et al. [9].

Our experiments use a model similar to that 

presented by Doersch [10]. The autoencoders have 

hidden layers 1000-500-250-�-250-500-1000. 

We also use convolutional layers in the network, 

which is referred to as convolutional variational 

autoencoder (CVAE), presented in the next 

subsection.

2.4. Info Variational Autoencoder (IVAE)

Kim and Mnih [11], Chen et al. [12], and Zhao et

al. [13] all proposed methods regarding mutual 

information of � and �. According to Zhao et al. 

[13], the KL divergence in equation (1) has two 

problems: uninformative latent code and variance 

over-estimation in the feature space. Therefore, 

they use maximum mean discrepancy (MMD) [14]

instead.

MMD is based on the idea that two distributions are 

identical if and only if all their moments are the same. 

Therefore, we can define a divergence by measuring 

the difference between the moments of two 

distributions �(�) and �(�) . It can be efficiently

implemented using a kernel trick [13]. Using MMD 

in the IVAE will maximize the mutual information 

between the input � and the latent code �.

�����(�) � �(�)� = ��(�),�(��)[�(�, ��)]

− 2��(�),�(��)[�(�, ��)]

+ ��(�),�(��)[�(�, ��)]

(2)

where �(�, ��) is any universal kernel. A kernel can

be intuitively interpreted as a function that measures

the “similarity” of two samples. It has a large value 

when two samples are similar, and a small value 

when they are different. ��� = 0 if and only if � =

�.

Our IVAE models use two convolution layers with 

64 and 128 filters, respectively, one hidden layer 

with 1024 units, and latent space with � units for the 

encoder and the reverse structure for the decoder.

To assess the effect of MMD and network 

architecture, we also use a VAE with the same 

architecture as the IVAE model, while keeping its KL 

loss function. We refer to this model as the 

convolutional variational autoencoder (CVAE).

2.5. Adversarial Autoencoder (AAE)

AAEs [15] turn a standard autoencoder into a 

generative model by imposing a prior distribution 

�(�) on the latent variables by penalizing some 

statistical divergence between �(�) and ��(�) using 

a generative adversarial network (GAN) [3].

In addition to minimizing the reconstruction 

discrepancy, these autoencoders have an additional 

discriminator part to ensure that the encoded latent 

codes are similar to samples obtained from the prior 

distribution. As in the VAE, the prior distribution is 

usually the standard normal distribution. In all the 

experiments conducted by Makhzani et al. [15], the 

encoder and decoder are considered to be 

deterministic.

In our experiments, the autoencoder has hidden 

layers 1000-1000-� -1000-1000, whereas the 

discriminator network has layers �-1000-1000-1 

(the last layer indicates whether the latent code is 

from the encoder or sampled from the prior 

distribution).

Generally, autoencoders with different 

architectures and loss functions can have different 

impacts on the extracted data. To assess these 

impacts, we focus on the performance of several 

classifiers using the extracted data. The classifiers 

are presented in the next section.
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CLASSIFIERS

Several classifiers are used for experiments to 

magnify the effectiveness of feature extraction using 

autoencoder. They include Gaussian Naive Bayes, 

support vector machine, random forest, and neural 

network. We benchmark the performance of the 

classifiers trained on the original dataset and the 

extracted one.

3.1. Gaussian Naïve Bayes

Naive Bayes classifier is a simple probabilistic 

classifier based on the Bayes theorem. Naive Bayes 

considers each feature variable as an independent 

variable [16]. It involves the prior and posterior 

probability calculation of the classes in the dataset.

The prior probability of an instance � belonging to 

a class � is expressed as follows:

�(� = �) =
������ �� ��������� �� ����� �

����� ������ �� ���������
(3)

The posterior probability of the occurrence of an 

instance �, given class � is computed as follows:

�(� | � = �) =  � �(�� = ��  | � = �)

�

���

(4)

where �� is the feature variable and � is the class

label.

The classification is performed by applying the 

Bayes theorem to calculate the probability of a 

particular instance � = (��, … , ��) belonging to a 

class.

�(� = � | �� = ��, … , �� = ��)

=  
�(� = �) ∗ �(� | � = �)

�(�)

=
�(� = �) ∗ ∏ �(�� = ��  | � = �)�

���

∑ ��� = ��� ∗ ∏ �(�� = ��  | � = ��)�
����

(5)

We can just compare the numerator for each class 

as the denominator is the same for all classes. The 

class of an instance � = (��, ��, … , ��) is given by

argmax
�

�(� = �) ∗ � �(�� = ��  | � = �)

�

���

(6)

When dealing with continuous data, a typical 

assumption is that the continuous values associated 

with each class are distributed according to a 

Gaussian distribution. The training data are 

segmented by class, and the mean and variance of 

each class are calculated [16]. Therefore, the 

following formula can be used to estimate the 

probabilities of a continuous dataset.

�(�� = ��  | � = ��) =  
1

�2����

�
�

��������
�

����
� (7)

where ��� and ��� are the mean and standard 

deviation of variable �� for class ��.

3.2. Support Vector Machine

Support vector machine (SVM) [17] is a 

classification approach. It constructs a maximum 

marginal hyperplane in a multidimensional space to 

separate different classes. There are some data 

points that are closest to the hyperplane and 

contribute to the construction of the hyperplane. 

They are called support vectors.

Initially, the boundary between two classes is linear. 

However, in practice, we are sometimes faced with 

non-linear class boundaries. In such cases, we could 

address the problem by enlarging the feature space 

using quadratic, cubic, and even higher-order 

polynomial functions of the features [18]. SVM uses 

a technique called the kernel trick. Here, the kernel 

takes a low-dimensional input space and transforms 

it into a higher dimensional space. In other words, 

the kernel trick converts a nonseparable problem to 

separable problems by adding more dimensions to 

the input space.

In this study, we use the radial basis function kernel 

(rbf), which has the formula:

�(�� , ��
�) = exp �−� �(��� − ����)�

�

���

 � (8)

where � is the kernel coefficient, ranging from 0 

to 1. It is set to 
�

�_��������
∗ �. ���() by default.

3.3. Random forest

Random forests [19] are an ensemble model made 

of decision trees. Several decision trees are built on 

bootstrapped training samples that are generated by 

taking repeated samples from the (single) training 

dataset. Each time a split in a tree is considered, a 

random sample of � features is chosen as split 

candidates from the full set of � features. The split 

can use only one of those � features [18]. By 

combining hundreds or even thousands of trees, a 

random forest will usually outperform the individual 

tree.

In classification, for a given test observation, we can 

record the class predicted by each of the trees and 

take a majority vote. The overall prediction is the 

most commonly occurring class among the 

predictions [18].
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We use 100 classifier trees for each random forest 

in this study.

3.4. Neural networks

In this study, we employ a convolutional neural 

network as the data are images. Convolution 

networks combine three architectural ideas to 

ensure some degree of shift, scale, and distortion 

invariance: local receptive fields, shared weights (or 

weight replication), and spatial or temporal sub-

sampling [20].

The input layer receives images that are 

approximately size normalized and centered. Each 

unit in a layer receives inputs from a set of units 

located in a small neighborhood in the previous layer. 

With local receptive fields, neurons can extract 

elementary visual features such as oriented edges, 

endpoints, and corners, or similar features in other 

signals, such as speech spectrograms. These 

features are then combined by the subsequent layers 

to detect higher-order features. Units in a layer are 

organized in planes within which all units share the 

same set of weights. The set of outputs of the units 

in such a plane is called a feature map [20].

Once a feature has been detected, its exact location 

becomes less important. Only its approximate 

position relative to other features is relevant. A 

simple way to reduce the precision with which the 

position of distinctive features is encoded in a 

feature map is to reduce the spatial resolution of the 

feature map. This can be achieved with a so-called 

sub-sampling layers which performs a local 

averaging and a sub-sampling, reducing the 

resolution of the feature map, and reducing the 

sensitivity of the output to shifts and distortions [20].

The architecture used in this study follows the 

LeNet-5 architecture presented in the work of 

LeCun et al. [20]. It comprises seven layers, not 

counting the input layer. There are two convolutional 

layers (with 6 and 16 5x5-filters, respectively) 

followed by an average sub-sampling layer each. 

After that, there are one convolutional layer with 120 

5x5-filters and two fully connected layers with 84 

and 10 units. The activation function is rectified 

linear unit (ReLU) for all layers, except softmax for 

the output layer because we perform classification 

on this layer. The loss function is the sparse 

categorical cross-entropy.

METHODOLOGY

As mentioned earlier, in this study, we use 

empirical results to assess the factors affecting the 

autoencoder, including the datasets, the machine 

learning models, and the number of dimensions of the 

latent space (denoted by � ). Hence, our method 

involves designing a framework for conducting 

experiments and analyzing the acquired results.

The problem in this study is image classification. 

We employ popular machine learning algorithms to 

classify images from several datasets into their 

corresponding categories. The image or data can be 

preprocessed in advance by the autoencoders.

The goal of using autoencoder for feature 

extraction is to reduce the dimensions of the feature 

space while retaining useful information for building 

the classifiers. Therefore, we compared two data 

preprocessing approaches for training classifiers: 

without and with autoencoder. In the latter one, we 

used different combinations of autoencoders, 

numbers of latent dimensions, and classifiers on 

different datasets to provide a comprehensive 

comparison of these factors.

In the first approach, we employed the classifier 

models mentioned in Section 3 to classify the original 

datasets without any preprocessing steps. The 

performance of these classifiers in terms of 

accuracy and running time was considered as the 

baseline for further comparison.

In the second approach, we conducted experiments 

using autoencoders for preprocessing data. As 

shown in Figure 1, the overall process consists of 

two main steps: data preprocessing, and model 

Fig. 1. Process of experiments using autoencoders in the data preprocessing step.
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training and inference. Each dataset consists of a 

training and test set. In the data preprocessing step, 

the original training set was used for training the 

autoencoders in an unsupervised manner. For each 

dataset, we ran different types of autoencoders and 

different numbers of latent space dimensions � . 

After being trained, the autoencoders transformed 

the original training and test datasets into extracted 

training and test datasets. In the model training and 

inference step, these two extracted datasets, 

including labels, were then used as the training and 

test set for fitting the classifiers and making 

predictions, respectively. The classifiers included all 

types mentioned in Section 3 apart from the neural 

network because its architecture is specified for the 

original data.

Subsequently, we compared the accuracy and 

elapsed time of the classification between the two 

approaches as well as among the values of the latent 

space dimension �, the classifiers, and the datasets 

in the same approach to evaluate the efficiency of the 

autoencoders. We also compared different network 

architectures and loss functions used in 

autoencoders. We finally provided further 

suggestions regarding the use of an autoencoder for 

feature extraction.

The main effort is not to maximize the performance 

of the autoencoders. We used a similar structure and 

hyper-parameters for each type of autoencoder to 

observe their performance regarding different 

combinations of � , classifiers, and datasets. All 

models were optimized by Adam optimization [21]

(Kingma & Ba, 2015). All experiments were

implemented using Tensorflow1.

EXPERIMENTS

This section presents the experimental results. We 

first introduce datasets used for experiments in 

subsection 5.1. The baseline performances of the 

first approach are shown in subsection 5.2. The 

results of the approach using autoencoders are 

presented in subsection 5.3. A comparison regarding 

convolution and info variation autoencoders is 

included in subsection 5.4.

1 The source code is available on Github at 

https://github.com/KienMN/Autoencoder-Experiments.

5.1. Datasets

The datasets used in this study include: MNIST

[22], Fashion MNIST [23], and Cifar-10 [24].

· MNIST is a dataset of handwritten digits. It has 

a training set of 60,000 examples and a test set 

of 10,000 examples. Each example is a 28x28 

grayscale image associated with a label of a digit.

· Fashion MNIST is a dataset of Zalando's article 

images consisting of a training set of 60,000 

examples and a test set of 10,000 examples. 

Each example is a 28x28 grayscale image 

associated with a label from 10 classes.

· The Cifar-10 dataset consists of 60,000 

32x32 color images in 10 classes with 6,000 

images per class. There are 50,000 training 

images and 10,000 test images.

Table 1 summarizes the information regarding the 

datasets.

Table 1. Summary of the datasets

Summary MNIST Fashion 

MNIST

Cifar-10

Training 

examples

60,000 60,000 50,000

Test 

examples

10,000 10,000 10,000

Image size 28x28 28x28 32x32

Image type gray Gray color

Number of 

channels

1 1 3

The reason for selecting these datasets is that they 

are popular in the field of machine learning, they 

require little domain knowledge, and it is difficult to 

extract features manually because of their large 

number of dimensions. One special point is that they 

are all image data. Therefore, they might be suitable 

for some network architecture.

5.2. Baseline models

We ran the neural network and other classifiers, 

including Gaussian Naive Bayes, SVM, and Random 

Forest, on the original dataset. The accuracy of 

these models was considered as the baseline for the 

benchmark. The results are shown in Table 2.
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Table 2. Classification accuracy (%) of the 

baseline models

Models MNIST Fashion 

MNIST

Cifar-

10

Neural 

network

98.31 86.78 56.52

GaussianNB 55.58 58.56 29.76

SVM 97.92 88.29 54.36

Random 

forest

97 87.84 46.85

As shown in Table 2, the accuracy of the Gaussian 

NB classifiers is relatively low over all datasets. 

Interestingly, without data preprocessing, SVM and 

random forest classifiers performed nearly as well 

as neural network classifiers.

Table 3. Running time (s) of the baseline models

Models MNIST Fashion 

MNIST

Cifar-10

Neural 

network

45.47 45.36 45.47

GaussianNB 0.83 0.77 3.19

SVM 580.35 867.79 10632.66

Random 

forest

28.04 62.12 172.57

According to Table 3, the running time of the neural 

network, Gaussian NB, and random forest classifiers 

is significantly lower than that of SVM. The elapsed 

time of the neural network is likely to depend on the 

architecture of the network as we use similar 

architectures for all datasets. This may be because   

of the implementation and optimization of the deep 

learning library. The running time of other classifiers 

increases when the dataset is more sophisticated.

5.3. Using autoencoders

We used autoencoders for feature extraction from 

the original dataset before fitting the data into the 

classifiers. The accuracy and running time of the 

classification when applying the autoencoder are 

presented in Figures 2 - 7.

Figures 2 to 7 show the accuracy and the running 

time (autoencoder and classifier) of the classification 

on the test set of the MNIST, Fashion MNIST, and 

Cifar-10 datasets, respectively, depending on the 

number of latent space dimensions ( � ). The 

horizontal axis represents the values of �, and the 

vertical axis represents the accuracy or the running 

time of the classification. Each line indicates the 

metric of a model, which is a combination of an 

autoencoder and a classifier, on the test set when 

using the data extracted by the autoencoder. The 

same color is used for the same type of autoencoder, 

and the same line style is used for the same classifier. 

GBM, SVM, and RF are shorthand for Gaussian NB, 

support vector machine, and random forest. The 

running time of the autoencoder is not considered 

here because we consider autoencoder as a pre-

training step.

The first observation is the amount of reduced data. 

The value of � is now below 30, which indicates that 

the size of the encoded data is approximately 1% -

3% compared to that of the original data. As a result, 

the complexity of the models in terms of running 

time and space will decrease significantly, as 

presented below.

Fig. 2. Accuracy of classification on the MNIST dataset
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Fig. 3. Accuracy of classification on the Fashion MNIST dataset

Fig. 4. Accuracy of classification on the Cifar-10 dataset

Fig. 5. Running time of classification on the MNIST dataset
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As shown in Figure 2, overall, the usage of the 

autoencoder enhances the performance of the 

Gaussian NB classifier from 55.58% to at least over 

80% while maintaining the performance of the SVM 

and random forest on significantly low 

dimensionality data. The accuracy of the classifiers 

increases gently with the increase in � . The 

performance of the IVAE is the best among all 

autoencoders. Turning to the running time, as shown 

in Figure 5, the elapsed time of the SVM drops 

dramatically from 580s when running on the entire 

data to under 25s when running on the extracted data. 

One interesting thing to note is that there is a small 

leap in the performance of the AAE when the value 

of � is 10. Correspondingly, the running time of the 

SVM using data extracted by the AAE decreases 

sharply when the value of � is 10. In this case, the 

extracted data are well separated in the space, so 

that the SVM can assess fewer support vectors than 

before.

According to Figures 3 and 6, on the Fashion 

MNIST dataset, similar to the MNIST dataset, 

autoencoders help to improve the accuracy of the 

Gaussian NB classifier from 58.56% to over 70%. 

Using the autoencoder still helps to reduce the 

running time of the SVM from over 850s to under 

60s and that of random forest from over 60s to under 

25s at the cost of a small reduction in the accuracy 

(by 1 - 5% and 3 - 5%, respectively). The increase 

in � gives a small boost to the result, but gradually, 

Fig. 6. Running time of classification on the Fashion MNIST dataset

Fig. 7. Running time of classification on the Cifar-10 dataset
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the effectiveness becomes insignificant. The IVAE 

still demonstrates the best performance.

On the Cifar-10 dataset, as shown in Figures 4 and 

7, only the VAE and IVAE help to improve the 

accuracy of the Gaussian NB but insignificantly 

(approximately 5%). For the IVAE, increasing �

increases the accuracy. Apart from that, increasing 

� has little effect on the accuracy of the classifiers. 

The running time of the SVM and random forest can 

be reduced by using extracted data from the 

autoencoder (from over 10,500s down to under 

200s and near 180s to around 25s, respectively) at 

the cost of reduction in accuracy (at least for 2% 

both).

In all experiments, the autoencoder approach could 

not beat the neural network approach in terms 

of accuracy. The combination of the IVAE and the 

SVM demonstrated the best performance among the 

combinations. The reasons are clarified in the 

suggestion section.

Generally, the dataset has some impacts on the 

autoencoder model. In all datasets, the IVAE 

performed well because of the convolution layers in 

its architecture, which is suitable for image data. In 

a more sophisticated dataset (Cifar-10), the DAE 

and the AAE did not perform well because each 

image has three channels. Therefore, it is not simple 

to treat an image as a large input vector for a dense 

layer. Surprisingly, although it contained only dense 

layers, the VAE performed better than the DAE and

the AAE on Cifar-10 dataset.

Fig. 8. Accuracy of classification on the MNIST dataset

Fig. 9. Accuracy of classification on the Fashion MNIST dataset
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5.4. Convolution variational autoencoder versus 

Info variational autoencoder

As mentioned in subsection 2.4, to assess the 

efficiency of the network architecture and loss 

function, we compare the performance of three 

types of autoencoders. The first one is VAE, which 

contains only dense layers (fully connected layers) 

and uses the KL loss function shown in equation (1). 

Using the same loss function as the VAE, a 

Convolutional variational autoencoder (CVAE) 

employs additional convolutional layers that show an 

advantage on the image data. The last one, which is 

the IVAE, has the same architecture as the CVAE. 

However, it makes use of the MMD loss function

expressed in equation (2). A summary of these 

three types of autoencoders is presented in Table 4, 

and the result is presented in Figures 8 - 10.

Table 4. Summary of the VAE, CVAE, and IVAE

Autoencoders Network 

architecture

Loss 

function

VAE Dense layers KL

CVAE Convolutional 

and Dense 

layers

KL

IVAE Convolutional 

and Dense 

layers

MMD

Figures 8 to 10 illustrate the accuracy of 

classification on the data extracted by different 

types of autoencoders, similar to Figures 2 to 4. The 

autoencoders include the VAE, CVAE, and IVAE.

Overall, the performance of the IVAE is higher than 

that of the CVAE. In most cases, the orange line is 

higher than the blue one of the same line style. This 

indicates that its MMD loss function forces the 

autoencoder to encode more useful information from 

the input to the latent code than the KL loss function.

Meanwhile, the CVAE performs better than the 

VAE. The reason is that the convolutional layers 

allow the autoencoder to detect and extract more 

useful features from the image dataset compared to 

the dense layers.

SUGGESTIONS

From the results acquired, we present some 

suggestions when applying autoencoder for feature 

extraction.

Autoencoder can be used to reduce the complexity 

of data, hence reducing the elapsed time and 

complexity of the machine learning model while 

increasing or maintaining its performance. It can be 

used in a pre-training step for preprocessing data 

before building machine learning models.

When using neural networks for machine learning 

tasks, there may be no need to use autoencoder for 

extracting features. Because deep model has a high 

capacity, which allows it to better understand 

features and data. As a result, feature extraction is 

somehow already included in the deep model, and it 

is likely to perform tasks well without data 

preprocessing. Hence, the effort here should focus 

on designing a powerful architecture to solve these 

problems.

Fig. 10. Accuracy of classification on the Cifar-10 dataset
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The increase in � allows more information to be 

encoded in the latent code. Therefore, the machine 

learning model using extracted data is likely to 

perform better. As shown in Figures 2 and 5, there 

are some points of � at which the data is encoded in 

the latent space so well that it makes the model 

remarkably efficient. However, the encoded 

information becomes saturated gradually. At that 

point, increasing � has little effect on the 

performance of the model.

There are two reasons why the IVAE works well in 

our experiments. The first reason is the MMD object 

function, which is described by Zhao et al. [13]. The 

second reason is the architecture of the network. 

Specifically, it employs convolutional layers in the 

autoencoder, which show an advantage on the image 

data, as shown in Section 5.4.

CONCLUSIONS

Autoencoders as well as other feature reduction 

methods are used in feature engineering to extract 

useful information from the raw data. They can 

minimize human effort and help to automate the data 

preprocessing process. Moreover, the information 

extracted by the autoencoder can then be used to 

improve or maintain the performance and reduce the 

complexity of machine learning models.

In this study, we reviewed feature extraction 

methods and autoencoders. Subsequently, we 

discussed different types of autoencoders and 

classifier. We then presented our methodology and 

conducted experiments using autoencoders with 

different values of � and classifiers on different 

datasets. Subsequently, we visualized and analyzed 

the results to assess the impact of these factors on 

the autoencoder and suggested the application of 

autoencoder for feature extraction.

For future research, it is worth investigating the 

behavior of the autoencoder to propose a novel 

autoencoder model. Additionally, we would like to 

develop an end-to-end approach for finding the 

best suited autoencoder for each specific task in 

which we no longer need to consider intermediate 

steps and only focus on the task.
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