
 

I. INTRODUCTION 

 

 Recent years have seen the increase of 

shrimp demand in South Korea, and shrimp 

farming is an important source of financial 

for local people. Normally, the farming 

cycle of shrimps is about 5 to 6 months. 

During this period, the size of shrimps 

needs to be measured several times, for 

the purpose to obtain the growth 

information of shrimp and determine the 

feed amount for breeding shrimps[1,2]. 

Over-feeding may cause high costs for 

farmers and pollution of the growing 

environment of shrimp due to excessive 

food accumulation, while under-feeding 

will result in growth depressions and 

cannibalism[3]. Traditional methods for 

estimating size of shrimps are mostly 

relied on human measurements of shrimp 

samples with a ruler or by empirical 

observations, which is time consuming and 

needs a huge amount of labor resource, 

increasing the breed costs. Furthermore, 

these methods are tended to miss the best 

time for harvest, due to the rough 

measurement. Therefore, it is much 

urgent to develop a technology to 

automatically monitor the growth of 

shrimps for the aquaculture field. 

To deal with this situation, this paper 

proposes to use deep learning method to 

estimate the size of shrimps, which can 

free shrimp culturist, greatly reducing 

shrimp farming costs. In particular, a deep 

neural network that can achieve instance 

segmentation on shrimp is first trained. 

This network is based on Mask RCNN[4], 

where we do the fine-tuning to update the 
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parameters for shrimp instance 

segmentation. Then, based on the masks, 

some morphological operations in image 

processing algorithms are utilized to 

estimate the length and width of shrimps. 

For length estimation, an edge detection 

method is used to generate an edge for the 

mask and then a skeleton extraction 

method is applied to thin the shrimp 

contour, obtaining the center line of mask, 

and use the length of center line as the 

length of the shrimp. For width estimation, 

the first step is also to extract a contour of 

the mask, and then find a maximum 

inscribed circle inside the contour. The 

diameter of this circle is considered as the 

width of shrimp. There are many 

alternative ways to decide the length and 

width for shrimps. We use the above 

principles to define them, because of the 

simplicity and efficiency. 

The remainder of this paper is as follows. 

A brief review on the related papers for 

size estimation of shrimp is presented in 

Section II. A detailed description of the 

proposed method is provided in Section III. 

In Section IV, the results of our method 

are discussed and Section V concludes the 

whole paper. 

 

II. RELATED WORK 

 

For size estimation of shrimp, Harbitz[5] 

proposed an image analysis method to 

automatically estimate length of shrimp. 

He firstly segmented the shrimp from the 

background by using intensity threshold, 

and then used a linear model to link 

log-log scale of length and pixel area. His 

method ran with a speed less than 0.01s 

per image while it had a precision of 0.43 

mm. However, this method needs to bring 

the shrimps from water and take a picture, 

which is also time consuming. Zhou[6] 

proposed to estimate size of shrimp in 3D 

space. This method firstly uses instance 

segmentation method to obtain masks, and 

then back-projects the 2D masks into 3D 

space, producing point clouds for each 

mask with multi-view geometry 

knowledges. It can only reconstruct 

surface point clouds, and is easy to 

measure the length, while not effective for 

width, due to the bad quality of 

reconstruction. Furthermore, it’s really 

hard to capture depth information from 

underwater shrimps because of the water 

scattering. This method needs to use 

stereo vision to compute the depth, 

increasing the complexity. On the contrary, 

this paper proposes measure size of 

shrimp based on instance segmentation 

masks, considering from effectiveness and 

convenience.  Our method only needs 

small amount of computing resources with 

fast speed to give size estimation for 

shrimps. 

 

III. PROPOSED METHOD 

 

The architecture of the proposed 

method is shown in Fig. 1. It contains 

instance segmentation and morphological 

operations. Due to that size estimation is 

based on shrimp mask, an instance 

segmentation deep neural network is first 

trained based on Mask RCNN[4]. This 

deep neural network is a famous instance 

segmentation model. It takes a RGB image 

as input and output the category, the 

coordinates of bounding box, and 

segmentation mask for each object in the 
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image. Compared with the previous 

segmentation algorithm, it can treat 

several objects of the same category as 

different instances. 

We do the fine-tuning to the original 

Mask RCNN model. The pre-trained 

weight file is trained on several popular 

public datasets, such as COCO dataset[9] 

and Pascal VOC dataset[10]. The 

experimental section provides the 

performance of this model on COCO 

dataset. In detail, the parameters of 

network layers in feature extraction 

module, RPN module, and fully convolution 

layers except the last classify layer are 

frozen. The fine-tuning process updates 

the parameters of a few of layers, to make 

the model can recognize and localize the 

shrimp class. Through the fine-tuning 

process, the customized Mask RCNN 

model can finish instance segmentation 

task on each given image, producing 

bounding boxes and masks, which is the 

basement for size estimation. 

 
Fig. 1. The diagram of the proposed method. An 

instance segmentation network is first trained 

based on Mask RCNN [5], and then length and 

width of shrimp are estimated based on masks. 

 
Fig. 2. Skeletonizing process. From left to right are 

mask, contour, and center line. 

 

Based on the shrimp masks generated 

by Mask RCNN model, a method involving 

skeletonizing contour of mask is applied to 

estimate the length of shrimp. This 

skeletonizing method is based on[7], 

which can achieve extraction of center line 

of a contour. In particular, a contour of the 

shrimp mask is first extracted and then the 

contour is thinned by skeletonizing method. 

The center line can effectively represent 

the real length of a contour, especially for 

the situations that there is a reverse 

curvature of the contour, compared with 

the length in bounding boxes. An example 

is shown in Fig. 2. 
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Table 1 Algorithm for width estimation 

 

For width estimation, we consider taking 

the diameter of the maximum inscribed 

circle as the width of the contour. We 

argue that the shrimp shape is non-rigid 

and the width in this shape is different 

from head to tail. It’s hard to define the 

width for the shrimp. Therefore, we 

compute each width from head to tail and 

choose the largest width, which is most 

representative for the growth of shrimp. 

To achieve this goal, we search inscribed 

circles inside the contour iteratively, and 

take the diameter of the largest inscribed 

circle as the width of the shrimp. The 

specific process is shown as Table 1. 

Some examples are visualized in Fig. 3. 

 
Fig. 3 The visualizations of find the maximum 

inscribed circle in a contour.  Left: instance 

segmentation mask. Right: maximum inscribed 

circle for the contour. 

 

IV. EXPERIMENTAL RESULTS 

 

We provide our experimental results and 

discussions on our method in this section. 

The experimental setups and dataset used 

for fine-tuning are first introduced and 

performance on instance segmentation is 

presented. Then results of size estimation 

of shrimp are visualized. Finally, some 

discussion about experimental results and 

the proposed method are given. 

Our experiments are conducted in 

Ubuntu 18.04 system with 3 Nvidia RTX 

TITAN graphics. The Pytorch and 

OpenCV library are used for implementing 

our method. The base learning rate is set 

as 0.00025 and the number of output class 

is set as 1. The Adam algorithm is used for 

optimization. The dataset is constructed 

by the images collected from a shrimp 

farm in Sinan Island, Republic of Korea. 

The camera we use is RealSense D435i 

from Intel Inc. Because the water 

scattering has distortion impacts, and 

water is much dirty, most raw images 

suffer several image distortion and 

blurring. When collecting images, we use 

an equipment to lift shrimps close to water 

Algorithm 1: Find maximum inscribed 

circle 

Input: The contour of a shrimp mask 

Output: The maximum inscribed circle 

1: Choose a pixel inside the contour and 

compute the distance of each pixel to the 

contour edge; 

2: Draw circles for each pixel using 

distance as radius, and check whether the 

circle tangents to the contour. If so, save 

that circle; 

3: Repeat step 1 and 2, until all pixels 

inside the contour are traversed; 

4: Compare the radius of all saved circles 

and find the circle with largest radius; 

5: Output the circle that has the largest 

radius as the max inscribed circle.  
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surface, to obtain clear images. This 

equipment makes sure the height of 

camera to shrimps is the same every time 

when the camera takes a photo. If the 

water is clear enough, the shrimp images 

can be picked directly under the water.  

We choose 450 high quality images, 

which are relatively clearer from over one 

thousand images for instance 

segmentation experiment, where 300 

images are used for fine-tuning and 150 

images for testing. 

The fine-tuning of Mask RCNN is 

implemented on open-source codebase 

Detectron2[8], in which only a few of 

layers’ parameters are trained for shrimp 

class, keeping most layers’ parameters 

frozen. The instance segmentation results 

are shown in Table 2. The performance on 

COCO dataset[9] is directly borrowed 

from the codebase. 

As shown in Table 2, our fine-tuning 

results have much larger improvements 

than the results on COCO dataset. Shrimp 

indicates our own 450 shrimp images. AP 

means the average precision of the model, 

which is one of the key metrics for 

comparing the performance of instance 

segmentation models. AP50 and AP75 

indicate AP value when the threshold of 

IOU set as 0.5 and 0.75, respectively. APS 

and APL validate the performance from a 

multi-scale point, meaning that AP value 

of small and large objects. The values of 

APs in our method are extremely small 

because there are few small shrimps. 
 

Table 2 Instance segmentation results 

Metrics 
IOU of Bounding box IOU of Mask 

Shrimp COCO Shrimp COCO 

AP 76.6 39.8 68.1 31.37 

AP50 84.2 62.3 83.2 60.0 

AP75 82.2 43.4 76.5 39.4 

APS 1.1 22.1 0.1 16.9 

APL 91.3 51.2 81.3 53.5 

 

Our customized model has large 

improvements in other metrics except that 

term. Comparing the performance of our 

results with the public ones is less 

meaningful, because there is only one 

class in our experimental dataset, and the 

number of shrimps in one image is 

relatively small. While as long as there is 

no serious occlusion, even shrimp density 

is high, we believe this model can 

effectively generate shrimp masks with 

sufficient data, according to that Mask 

RCNN is used in all kinds of vision tasks. 

Therefore, our method can still calculate 

the shrimp size. 

The results in Table 2 proves that our 

fine-tuning process is successful, and 

based on the instance segmentation 

results, the size estimation of shrimp is 

explored. The instance segmentation 

results are shown in Fig. 4. 

 
Fig. 4 The visualizations of instance segmentation 

results. Left: original images. Right: results. 

 
Fig. 6 The visualizations of size estimation results. 

Left: original images. Right: results. 
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To calculate the real size of shrimp, we 

need a reference stuff whose actual size is 

known, because our realsense camera 

cannot get accurate depth due to the water 

scattering. The details of calculation 

process are as follows. The Fig. 5 below 

shows pinhole camera model. 

 
Fig. 5 Pinhole camera model 

 

Assume that the length of  that is real 

stuff in 3D space is known as .  and 

 are image plane center and camera 

center respectively.  is the project of 

 in image plane, whose length is .  

is the focus of camera and  is the 

distance of  to camera center, which 

can be measured by depth camera. Note 

that  is perpendicular to the camera. 

According to the Principle of Similar 

Triangles, we have the scale, 

        (1) 
Because the shrimp is under the water, the 

depth  here cannot be measured 

accurately. But through the reference stuff, 

we can get the scale that presents the 

actual length of a pixel unit. Once we get 

the pixel size of shrimp, we can then 

calculate the real size through the scale. 

Specific to our project, if we want to 

calculate the real size of shrimp, we need 

to find out the length of the projection of 

reference stuff in every image. It’s much 

travail for our project. The proposed 

measurement is yet efficient enough for 

tracking the growth change of shrimps, 

although it is calculated in pixels. Because 

we usually sample shrimps from breeding 

pond, taking pictures, measuring their size, 

and calculate mean size information of the 

whole shrimps in the pond, and do it 

several times during the breeding season. 

It means that the method should be simple 

and easy to deploy. Our method just needs 

a camera and can be deployed to the 

NVIDIA Jetson Nano, with fast speed and 

relatively high instance segmentation 

performance. From this point, the 

proposed method can effectively finish 

this task. 

Fig. 6 shows the size estimation of 

shrimp, based on instance segmentation 

masks. The texts above the bounding 

boxes in the figure indicate class, 

confidence score, length, and width. These 

size values are in pixels, not actual length.  

The calculation of width and length in 

our method is not predicted by the 

network. Their calculations are based on 

masks produced by instance segmentation. 

Length is computed by skeletonizing 

contour of the corresponding mask and 

width is calculated by finding the maximum 

inscribed circle inside the contour. Both 

these operations belong to morphological 

category. There is no uncertainty in these 

operations. Given a certain mask, length 

and width are the only determined values. 

Therefore, the accuracy of the mask is the 

only uncertain factor. In other words, our 

method can be evaluated by the 

performance of instance segmentation, 

which is referred to Table 2. 

For our project, the pixel size is enough 
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to track the growth changes of shrimps. 

We can convert the pixel size into real size 

through the method proposed in the paper 

but is trivial for our project. It’s a 

demonstration for other researchers who 

are interested in computing real size. Our 

method belongs to the application of deep 

learning methods. Therefore, the common 

challenges in this area also exist in our 

method, such as small-scale dataset, 

occlusions et al. But especially for our 

project, the image quality is really bad due 

to the underlying image distortion, dust 

scattering and dirty water. The dataset 

scale and image quality are the main 

challenges. Therefore, it is necessary to 

continuously collect pictures, expanding 

the dataset. 

 

V. CONCLUSION 

 

We propose a method based on deep 

learning techniques to estimate the size of 

shrimps in this paper. We use fine-tuning 

to update the Mask RCNN model, enabling 

it segmenting the shrimps. We then use 

skeletonizing and maximum inscribed 

circle knowledges to get the length and 

width of shrimp. The proposed method is 

simple and easy to deploy on the farm. 

Through this method, the growth of 

shrimps can be monitored conveniently. 
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