
 
 

 

Dynamic Computation Offloading Based on Q-Learning 

for UAV-Based Mobile Edge Computing 
 

Shreya Khisa1, Sangman Moh2 

 

Abstract 
Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things 

(IoT). The execution latency of IoT applications can be improved by offloading 

computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial 

vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving 

considerable attention. In this paper, we propose a dynamic computation offloading paradigm for 

UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge 

services to IoT devices on the ground. Since most IoT devices are energy-constrained, we 

formulate our problem as a Markov decision process considering the energy level of the battery 

of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the 

system utility. According to our performance study, the proposed scheme can achieve desirable 

convergence properties and make intelligent offloading decisions. 
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I. INTRODUCTION 

 

 Internet of things (IoT) devices 

have limited computation capability 

and energy resources to support 

different computation-intensive 

applications, such as face recognition 

and virtual/augmented reality games. 

Mobile edge computing (MEC) 

techniques can effectively handle 

these challenges. Using MEC, IoT 

devices can offload computation- 

intensive tasks to the MEC server. 

IoT devices can utilize the MEC 

server resources of computation, 

energy, and memory, which can help 

enhance the energy efficiency of IoT 

devices. Two types of offloading 

techniques are being applied: binary 

and partial offloading[1,2]. In binary 

offloading, the entire task can be 

offloaded to the MEC server or 

computed locally. However, in partial 

offloading[3,4], some portion of the 

task can be offloaded to the MEC 

server, and the rest can be executed 

locally. Although the partial offloading 

mechanism can provide more benefits 

than the binary offloading scheme, it 

has complex hardware requirements. 

Unmanned aerial vehicles (UAVs) 

are gaining much attention among the 

researchers and industries due to 

their flexibility, ease of deployment, 

* This study was supported in part by research fund from Chosun University (2022). 
1 Dept. of Information and Systems Engineering, Concordia University, Canada 
2 Dept. of Computer Engineering, Chosun University 

Manuscript: 2023.02.10 

 

Confirmation of Publication: 2023.03.14 

Corresponding Author: Sangman Moh, e-mail: 

smmoh@chosun.ac.kr 

68 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2023.12.3.68



and flying capability[5-8]. Owing to 

the mobility of UAVs, in recent years, 

the integration of UAVs with MEC 

servers has received considerable 

attention because it can provide 

services in different urban and hostile 

environments. The UAV-MEC server 

can significantly enhance the 

computation performance[9,10]. For 

example, Yang et al. [11] proposed a 

UAV-based MEC system in which 

multiple UAVs serve as MEC servers 

to users on the ground. Recently, the 

authors in [12] proposed an algorithm 

for UAV-MEC to ensure the quality 

of service, as well as the optimization 

of the UAV trajectory. 

  In this study, we propose a dynamic 

computation offloading algorithm 

based on Q-learning to offload the 

tasks intelligently to the UAV-MEC 

server. We utilize a binary offloading 

mechanism, and each offloading 

decision is made based on the energy 

level and the deadline of the task in 

the current time slot. We consider a 

single UAV-MEC-based urban 

scenario. The UAV flies over a 

location where IoT devices are 

deployed. IoT devices can perform 

local execution and offload their tasks 

to the UAV-MEC server. 

The contributions of this article can 

be summarized as follows: We 

formulate our problem as a Markov 

decision process (MDP)-based 

problem. Then, we develop a dynamic 

model-free Q-learning-based 

computation offloading algorithm, 

which can aid the offloading decision 

based on the deadline of the tasks and 

the energy level of the IoT devices to 

maximize the system utility. The 

proposed scheme achieves desirable 

convergence properties and makes 

intelligent offloading decisions, and 

performs better in terms of energy 

consumption and execution cost. 

In Section II of this paper, relevant 

literature is reviewed. The system 

model is addressed in Section III. Our 

Q-learning-based offloading scheme 

is presented in Section IV. The 

simulation settings and results are 

discussed in Section V, followed by 

conclusions in Section VI. 

 
II. RELATED WORKS 

 

Recently, different offloading 

strategies have been proposed for 

UAV-based MEC systems. The 

authors in [13] proposed a 

UAV-based MEC system that 

optimized bit allocation and the UAV 

trajectory. They investigated the 

optimized bit allocation problem in 

both uplink and downlink 

communications. For uplink and 

downlink transmissions, frequency 

division duplex and non-orthogonal 

multiple access schemes were 

employed. The problem was 

formulated as a non-convex 

optimization problem and addressed 

using successive convex 

approximation-based approach. A 

partial offloading scheme in a 

UAV-MEC system was proposed in 

[14]. They investigated the 

minimization of the sum of the 

maximum delay in each time slot by 
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jointly optimizing the offloading ratio, 

user-scheduling variables, and the 

UAV trajectory. In [15], the authors 

presented a UAV-MEC where UAV 

functioned as both an MEC server and 

relay to the access point. 

An optimization problem was 

formulated to minimize the total 

energy consumption. A multi-UAV- 

based edge computing scenario was 

presented in [11]. Multi-UAVs were 

deployed for load balancing among the 

UAV and to enhance the performance 

of the entire system. A deep 

reinforcement learning-based task 

scheduling approach was proposed 

that could enhance the efficiency of 

task execution in each UAV. In [16], 

a Lyapunov function-based approach 

was used to minimize the energy 

consumption of the UAV-MEC 

system. Recently, a computation 

offloading algorithm based on 

multi-agent reinforcement learning 

was proposed in [17]. 

 

III. SYSTEM MODEL 

 

We consider an urban scenario in 

which a UAV with an MEC server 

hovered over multiple IoT devices as 

shown in Fig. 1. The UAV provides 

edge services to ground IoT devices to 

assist them in completing their 

computation-intensive and time- 

critical tasks. IoT devices could offload 

their tasks to the UAV-MEC server to 

reduce energy consumption and 

improve the task execution latency. 

We assume that the UAV will return to 

its initial location at the end of each 

period after providing edge services to 

the ground IoT devices. 
 

 
Fig. 1. An example of applications 

1. Local Computation Model 
When an IoT device decides to 

compute the task locally rather than 

offloading it to the UAV-MEC server, 

it employs a local computation model. 

If the IoT device decides to process its 

computation task  locally, the 

computation time depends on its own 

computing resources. The time 

required to execute a task depends on 

the CPU frequency and processing 

time. The execution latency of the task 

can be calculated as  

 
loc i i
i loc

i

D Ct
f

= ,            (1) 

where , , and  represent the 

data size of task , CPU cycles needed 

to process one bit of task, and 

computation capacity of the IoT device 

, respectively. 

As we have considered the latency 

constraint task, the execution latency 

must satisfy the following condition:  

maxloc
i it T≤           (2) 

Moreover, the computation capacity 

for the IoT device  is constrained by  
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maxloc
i if f≤ ,          (3) 

where  is the maximum 

computational capability of an IoT 

device. The energy consumption for 

processing a task can be determined 

by  

( )2loc loc
i loc i i iE C D fϕ= ,      (4) 

where  represents the effective 

switched capacitance of the processor 

of the IoT device. 

2. UAV-MEC Computation Model 
The UAV-MEC computation model 

is used when the IoT device decides to 

offload its task to the UAV-MEC 

server. When the size of the 

computation result is negligible 

compared to that of the computation 

task, the time required to receive the 

computation result can be omitted. For 

example, in applications such as face 

recognition or speech recognition, the 

task size is considerably larger than 

the size of the task result. In this case, 

the execution time depends on the 

computation execution time and uplink 

transmission time. The total execution 

time of the IoT device  is  

i i
mec

mec i

C Dt
f γ

= + ,         (5) 

where represents the computation 

capability of the UAV-MEC, and  is 

the data transmission rate. 

Eq. (5) must fulfill the task latency 

constraint requirement condition as  

maxmec
i it T≤ .           (6) 

The energy consumption in the UAV 

for the execution of a single task can 

be represented as  

( )2
mec mec i i mecE C D fϕ= ,      (7) 

where  represents the effective 

switched capacitance of the processor 

of the UAV. 

 

IV. Q-LEARNING-BASED 

COMPUTTAION OFFLOADING 

 

The offloading decision depends on 

the system state, which considers the 

energy of the IoT device and the 

deadline of the task. Notably, the 

current state depends only on the 

immediate previous state rather than 

the past states. Hence, we have 

formulated the computation offloading 

decision as an MDP. 

We propose a model-free 

Q-learning-based scheme to make 

offloading decisions. In each time slot, 

each IoT device first observes the 

energy level of their battery and 

then the deadline of each task 

. The state by considering 

the energy level and deadline can be 

formulated as . 

Based on the state , the IoT devices 

decide to offload as . These 

devices apply the -greedy policy 

with  to avoid convergence in 

the local maxima. 

The IoT devices either offload the 

entire task to the UAV-MEC server 

or compute it locally based on the 

state  After processing the 

offloaded task to the UAV-MEC 

server, the result is sent back to the 

IoT device. As the size of the result 
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after computation is very small 

compared to that of the offloaded task, 

the latency between the IoT device 

and UAV-MEC is negligible. The IoT 

device calculates the energy level, 

energy consumption, and computation 

latency. The tasks are latency- 

constrained. If the computation 

latency crosses the deadline bound, 

the task is automatically dropped. 

Moreover, the IoT devices are 

energy-constrained, and after the 

threshold level, they are unable to 

offload their tasks. Hence, the task 

proceeds for local computation. 

Moreover, after a certain threshold 

energy level, IoT devices are unable 

to compute the task locally. Hence, 

the task is dropped. 

The utility of the IoT device at 

time slot  can be denoted by  

depending on the energy consumption 

and execution cost, which can be 

written as: 

max
( )i k kU k t Eδ ω= +∑        (8) 

where  and  represent the weights 

of the execution cost and energy 

consumption, respectively. To 

maximize the system utility , the 

Q-value is updated as: 

'
1( , ) (1 ) ( , ) ( max ( , ))k k k k k kQ s a Q s a U Q s aα α γ +← − + +

(9) 

where the learning rate  is the 

learning rate and  denotes the 

discount factor, which is important for 

the future reward. The Q-learning- 

based computation offloading 

algorithm is presented as Algorithm 1. 

This algorithm can obtain an optimal 

policy for computation offloading 

using exploration and exploitation and 

has sufficient time slots. 

Algorithm 1: Q-learning-based computation offloading 

Input: Initialized , . 

Output: Offloading decision and data offloading 

1: for  do 

2:       Check the energy level . 

3:       Observe the deadline . 

4:       . 

5:       Select  via -greedy policy. 

6:       Offload data to the UAV-MEC. 

7:       Calculate the energy level. 

8:   Calculate the energy consumption, computation    

latency 

9:       Calculate utility  using Eq. (8). 

10:      Update Q-value using Eq. (9). 

11: end for 

 

V. PERFORMANCE EVALUATION 

1. Simulation Environment 
In our simulation, we consider an 

urban  area with  

fixed IoT devices in this area. UAV 

height is 50 m. In each device, the 

task request is generated using a 

binomial distribution with a probability 

of 0.6. The simulation parameters are 

presented in Table 1. 
 

Table 1. Simulation parameters 

Parameter Description Value 

 Number of IoT devices 10 

 Computation capability of 
IoT device 

2 GHz 

 Computation capability of 
UAV-MEC 

8 GHz 

 Number of CPU cycles 
needed to process one bit of 
task  

500 

 Height of UAV 50 m 

 Parameter of channel model 
for dense urban scenario 

12.08 

 Parameter of channel model 
for dense urban scenario 

0.11 

 Learning rate 0.9 

 Discount factor 0.5 

 Exploration probability of 
-greedy 

0.1 
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 Switch capacitance  
 

Bandwidth 1 MHz 

 Task input size 1.5–15 Mbits 

 
We set the computation capability of 

the IoT device and UAV to 2 GHz and 

8 GHz, respectively. We consider 

MHz as the system bandwidth, 

as the additive Gaussian 

noise, and  as the number of 

time slots. As we consider a dense 

urban scenario, we set the 

line-of-sight , non-line-of- 

sight ,  and  

[18]. We utilize a learning rate , 

discount factor  and exploration 

probability .1 for our Q-learning- 

based algorithm. Each input task size 

varies between 1.5 Mb and 15 Mb. The 

number of CPU cycles required to 

process one bit of task is set to 500 

for both the IoT device and the 

UAV-MEC server. The weights of the 

execution cost and energy 

consumption cost are set at . 

The initial battery energy level is set 

at 100 W. 

2. Simulation Results and Discussion 
Figs. 2 and 3 show the average 

execution cost and average energy 

consumption of our proposed scheme, 

respectively. The average execution 

cost represents the average execution 

time in seconds. We calculated the 

average execution cost by dividing the 

local and UAV-MEC server execution 

costs by the total number of task 

requests. The average energy 

consumption was also calculated in 

the same manner as the average 

execution cost.  

 
Fig. 2. Average execution cost 

 

Fig. 3. Average energy consumption 
 

It can be observed that local 

execution requires a longer execution 

time than UAV-MEC server 

execution. Moreover, Figs. 2 and 3 

clearly show that, after the 

convergence of the algorithm, the 

average execution cost and average 

energy consumption remain the same 

in each time slot. After convergence, 

the average execution cost of the 

UAV-MEC server in each time slot is 

approximately 0.2 s, and for local 

execution, it is approximately 0.7 s. 

After convergence, the average 

energy consumption for both the local 

and UAV-MEC servers is very low. 

Fig. 4 shows the average ratio for 

choosing whether to offload data or 

execute it locally. Our Q-learning- 

based algorithm makes an intelligent 
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decision to maximize the system 

utility. Fig. 4 shows that, for 

approximately 70% of the time, the 

IoT device chooses to offload data to 

the UAV-MEC server; otherwise, it 

executes the task locally. The 

decision is based on the deadline of 

the task and the current energy level 

of the IoT device. 

 
Fig. 4. Average ratio of offloading decision 

 
Fig. 5. Average utility 

 
Fig. 5 is closely related to Fig. 4. As 

the offloading decision is made to 

maximize the system utility, Fig. 4 

shows that the system utility for 

UAV-MEC server execution is higher 

than that for local execution. We 

calculated the system utility based on 

the execution cost and energy 

consumption. For simplicity, we 

considered the same weight for both 

the execution cost and energy 

consumption, i.e., . The 

UAV-MEC server execution cost 

depends on the data rate and 

offloading time, whereas the 

execution cost in IoT depends only on 

the device itself. 

We adopted the -greedy policy to 

balance exploration and exploitation. 

The reason behind using this policy is 

that the algorithm is not stuck at the 

local optimum; rather, it converges to 

the global optimum. In an -greedy 

based algorithm, the value of  plays 

a very important role in the 

exploration and exploitation 

techniques. Hence, we evaluated our 

algorithm by varying the  value. The 

size of the input task varied between 

10,000,000 and 50,000,000 bits. Fig. 

6 shows the average execution cost 

for different values of . The figure 

that the average execution cost is 

highest when  and lowest when 

. 

 
Fig. 6. Execution cost with different values of  

 

Fig. 7 shows the average energy 

consumption for different values of . 

The energy consumption is the lowest 

with  and highest when . 

Finally, Fig. 8 shows the average 

utility of the system with various 
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values of . The utility is maximum 

when  and minimum when 

. 

 
Fig. 7. Energy consumption with different values of  

 
Fig. 8. Utility with different values of  

 

VI. CONLCUSION 

 

In this study, we proposed an 

energy-aware Q-learning-based 

computation offloading scheme for 

UAV-based MEC systems. To 

maximize the system utility, our 

offloading algorithm takes decisions 

intelligently based on the system 

state (the deadline of the tasks and 

the energy level of IoT devices). The 

decision involves choosing between 

offloading the data to UAV-MEC and 

executing it locally. Our proposed 

scheme can provide better 

performance in terms of energy 

consumption and execution costs. In 

the future, we intend to investigate 

deep Q-learning-based offloading 

techniques focusing on the minimized 

energy consumption. 
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