

Dynamic Computation Offloading Based on Q-Learning

for UAV-Based Mobile Edge Computing

Shreya Khisa1, Sangman Moh2

Abstract
Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things

(IoT). The execution latency of IoT applications can be improved by offloading

computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial

vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving

considerable attention. In this paper, we propose a dynamic computation offloading paradigm for

UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge

services to IoT devices on the ground. Since most IoT devices are energy-constrained, we

formulate our problem as a Markov decision process considering the energy level of the battery

of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the

system utility. According to our performance study, the proposed scheme can achieve desirable

convergence properties and make intelligent offloading decisions.

 Keywords : Computation offloading | energy efficiency | mobile edge computing | Q-learning | reinforcement

learning

I. INTRODUCTION

 Internet of things (IoT) devices

have limited computation capability

and energy resources to support

different computation-intensive

applications, such as face recognition

and virtual/augmented reality games.

Mobile edge computing (MEC)

techniques can effectively handle

these challenges. Using MEC, IoT

devices can offload computation-

intensive tasks to the MEC server.

IoT devices can utilize the MEC

server resources of computation,

energy, and memory, which can help

enhance the energy efficiency of IoT

devices. Two types of offloading

techniques are being applied: binary

and partial offloading[1,2]. In binary

offloading, the entire task can be

offloaded to the MEC server or

computed locally. However, in partial

offloading[3,4], some portion of the

task can be offloaded to the MEC

server, and the rest can be executed

locally. Although the partial offloading

mechanism can provide more benefits

than the binary offloading scheme, it

has complex hardware requirements.

Unmanned aerial vehicles (UAVs)

are gaining much attention among the

researchers and industries due to

their flexibility, ease of deployment,

* This study was supported in part by research fund from Chosun University (2022).
1 Dept. of Information and Systems Engineering, Concordia University, Canada
2 Dept. of Computer Engineering, Chosun University

Manuscript: 2023.02.10

Confirmation of Publication: 2023.03.14

Corresponding Author: Sangman Moh, e-mail:

smmoh@chosun.ac.kr

68 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2023.12.3.68

and flying capability[5-8]. Owing to

the mobility of UAVs, in recent years,

the integration of UAVs with MEC

servers has received considerable

attention because it can provide

services in different urban and hostile

environments. The UAV-MEC server

can significantly enhance the

computation performance[9,10]. For

example, Yang et al. [11] proposed a

UAV-based MEC system in which

multiple UAVs serve as MEC servers

to users on the ground. Recently, the

authors in [12] proposed an algorithm

for UAV-MEC to ensure the quality

of service, as well as the optimization

of the UAV trajectory.

 In this study, we propose a dynamic

computation offloading algorithm

based on Q-learning to offload the

tasks intelligently to the UAV-MEC

server. We utilize a binary offloading

mechanism, and each offloading

decision is made based on the energy

level and the deadline of the task in

the current time slot. We consider a

single UAV-MEC-based urban

scenario. The UAV flies over a

location where IoT devices are

deployed. IoT devices can perform

local execution and offload their tasks

to the UAV-MEC server.

The contributions of this article can

be summarized as follows: We

formulate our problem as a Markov

decision process (MDP)-based

problem. Then, we develop a dynamic

model-free Q-learning-based

computation offloading algorithm,

which can aid the offloading decision

based on the deadline of the tasks and

the energy level of the IoT devices to

maximize the system utility. The

proposed scheme achieves desirable

convergence properties and makes

intelligent offloading decisions, and

performs better in terms of energy

consumption and execution cost.

In Section II of this paper, relevant

literature is reviewed. The system

model is addressed in Section III. Our

Q-learning-based offloading scheme

is presented in Section IV. The

simulation settings and results are

discussed in Section V, followed by

conclusions in Section VI.

II. RELATED WORKS

Recently, different offloading

strategies have been proposed for

UAV-based MEC systems. The

authors in [13] proposed a

UAV-based MEC system that

optimized bit allocation and the UAV

trajectory. They investigated the

optimized bit allocation problem in

both uplink and downlink

communications. For uplink and

downlink transmissions, frequency

division duplex and non-orthogonal

multiple access schemes were

employed. The problem was

formulated as a non-convex

optimization problem and addressed

using successive convex

approximation-based approach. A

partial offloading scheme in a

UAV-MEC system was proposed in

[14]. They investigated the

minimization of the sum of the

maximum delay in each time slot by

2023년 04월 스마트미디어저널 69Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

jointly optimizing the offloading ratio,

user-scheduling variables, and the

UAV trajectory. In [15], the authors

presented a UAV-MEC where UAV

functioned as both an MEC server and

relay to the access point.

An optimization problem was

formulated to minimize the total

energy consumption. A multi-UAV-

based edge computing scenario was

presented in [11]. Multi-UAVs were

deployed for load balancing among the

UAV and to enhance the performance

of the entire system. A deep

reinforcement learning-based task

scheduling approach was proposed

that could enhance the efficiency of

task execution in each UAV. In [16],

a Lyapunov function-based approach

was used to minimize the energy

consumption of the UAV-MEC

system. Recently, a computation

offloading algorithm based on

multi-agent reinforcement learning

was proposed in [17].

III. SYSTEM MODEL

We consider an urban scenario in

which a UAV with an MEC server

hovered over multiple IoT devices as

shown in Fig. 1. The UAV provides

edge services to ground IoT devices to

assist them in completing their

computation-intensive and time-

critical tasks. IoT devices could offload

their tasks to the UAV-MEC server to

reduce energy consumption and

improve the task execution latency.

We assume that the UAV will return to

its initial location at the end of each

period after providing edge services to

the ground IoT devices.

Fig. 1. An example of applications

1. Local Computation Model
When an IoT device decides to

compute the task locally rather than

offloading it to the UAV-MEC server,

it employs a local computation model.

If the IoT device decides to process its

computation task locally, the

computation time depends on its own

computing resources. The time

required to execute a task depends on

the CPU frequency and processing

time. The execution latency of the task

can be calculated as

loc i i
i loc

i

D Ct
f

= , (1)

where , , and represent the

data size of task , CPU cycles needed

to process one bit of task, and

computation capacity of the IoT device

, respectively.

As we have considered the latency

constraint task, the execution latency

must satisfy the following condition:

maxloc
i it T≤ (2)

Moreover, the computation capacity

for the IoT device is constrained by

70 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

maxloc
i if f≤ , (3)

where is the maximum

computational capability of an IoT

device. The energy consumption for

processing a task can be determined

by

()2loc loc
i loc i i iE C D fϕ= , (4)

where represents the effective

switched capacitance of the processor

of the IoT device.

2. UAV-MEC Computation Model
The UAV-MEC computation model

is used when the IoT device decides to

offload its task to the UAV-MEC

server. When the size of the

computation result is negligible

compared to that of the computation

task, the time required to receive the

computation result can be omitted. For

example, in applications such as face

recognition or speech recognition, the

task size is considerably larger than

the size of the task result. In this case,

the execution time depends on the

computation execution time and uplink

transmission time. The total execution

time of the IoT device is

i i
mec

mec i

C Dt
f γ

= + , (5)

where represents the computation

capability of the UAV-MEC, and is

the data transmission rate.

Eq. (5) must fulfill the task latency

constraint requirement condition as

maxmec
i it T≤ . (6)

The energy consumption in the UAV

for the execution of a single task can

be represented as

()2
mec mec i i mecE C D fϕ= , (7)

where represents the effective

switched capacitance of the processor

of the UAV.

IV. Q-LEARNING-BASED

COMPUTTAION OFFLOADING

The offloading decision depends on

the system state, which considers the

energy of the IoT device and the

deadline of the task. Notably, the

current state depends only on the

immediate previous state rather than

the past states. Hence, we have

formulated the computation offloading

decision as an MDP.

We propose a model-free

Q-learning-based scheme to make

offloading decisions. In each time slot,

each IoT device first observes the

energy level of their battery and

then the deadline of each task

. The state by considering

the energy level and deadline can be

formulated as .

Based on the state , the IoT devices

decide to offload as . These

devices apply the -greedy policy

with to avoid convergence in

the local maxima.

The IoT devices either offload the

entire task to the UAV-MEC server

or compute it locally based on the

state After processing the

offloaded task to the UAV-MEC

server, the result is sent back to the

IoT device. As the size of the result

2023년 04월 스마트미디어저널 71Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

after computation is very small

compared to that of the offloaded task,

the latency between the IoT device

and UAV-MEC is negligible. The IoT

device calculates the energy level,

energy consumption, and computation

latency. The tasks are latency-

constrained. If the computation

latency crosses the deadline bound,

the task is automatically dropped.

Moreover, the IoT devices are

energy-constrained, and after the

threshold level, they are unable to

offload their tasks. Hence, the task

proceeds for local computation.

Moreover, after a certain threshold

energy level, IoT devices are unable

to compute the task locally. Hence,

the task is dropped.

The utility of the IoT device at

time slot can be denoted by

depending on the energy consumption

and execution cost, which can be

written as:

max
()i k kU k t Eδ ω= +∑ (8)

where and represent the weights

of the execution cost and energy

consumption, respectively. To

maximize the system utility , the

Q-value is updated as:

'
1(,) (1) (,) (max (,))k k k k k kQ s a Q s a U Q s aα α γ +← − + +

(9)

where the learning rate is the

learning rate and denotes the

discount factor, which is important for

the future reward. The Q-learning-

based computation offloading

algorithm is presented as Algorithm 1.

This algorithm can obtain an optimal

policy for computation offloading

using exploration and exploitation and

has sufficient time slots.

Algorithm 1: Q-learning-based computation offloading

Input: Initialized , .

Output: Offloading decision and data offloading

1: for do

2: Check the energy level .

3: Observe the deadline .

4: .

5: Select via -greedy policy.

6: Offload data to the UAV-MEC.

7: Calculate the energy level.

8: Calculate the energy consumption, computation

latency

9: Calculate utility using Eq. (8).

10: Update Q-value using Eq. (9).

11: end for

V. PERFORMANCE EVALUATION

1. Simulation Environment
In our simulation, we consider an

urban area with

fixed IoT devices in this area. UAV

height is 50 m. In each device, the

task request is generated using a

binomial distribution with a probability

of 0.6. The simulation parameters are

presented in Table 1.

Table 1. Simulation parameters

Parameter Description Value

 Number of IoT devices 10

 Computation capability of
IoT device

2 GHz

 Computation capability of
UAV-MEC

8 GHz

 Number of CPU cycles
needed to process one bit of
task

500

 Height of UAV 50 m

 Parameter of channel model
for dense urban scenario

12.08

 Parameter of channel model
for dense urban scenario

0.11

 Learning rate 0.9

 Discount factor 0.5

 Exploration probability of
-greedy

0.1

72 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

 Switch capacitance

Bandwidth 1 MHz

 Task input size 1.5–15 Mbits

We set the computation capability of

the IoT device and UAV to 2 GHz and

8 GHz, respectively. We consider

MHz as the system bandwidth,

as the additive Gaussian

noise, and as the number of

time slots. As we consider a dense

urban scenario, we set the

line-of-sight , non-line-of-

sight , and

[18]. We utilize a learning rate ,

discount factor and exploration

probability .1 for our Q-learning-

based algorithm. Each input task size

varies between 1.5 Mb and 15 Mb. The

number of CPU cycles required to

process one bit of task is set to 500

for both the IoT device and the

UAV-MEC server. The weights of the

execution cost and energy

consumption cost are set at .

The initial battery energy level is set

at 100 W.

2. Simulation Results and Discussion
Figs. 2 and 3 show the average

execution cost and average energy

consumption of our proposed scheme,

respectively. The average execution

cost represents the average execution

time in seconds. We calculated the

average execution cost by dividing the

local and UAV-MEC server execution

costs by the total number of task

requests. The average energy

consumption was also calculated in

the same manner as the average

execution cost.

Fig. 2. Average execution cost

Fig. 3. Average energy consumption

It can be observed that local

execution requires a longer execution

time than UAV-MEC server

execution. Moreover, Figs. 2 and 3

clearly show that, after the

convergence of the algorithm, the

average execution cost and average

energy consumption remain the same

in each time slot. After convergence,

the average execution cost of the

UAV-MEC server in each time slot is

approximately 0.2 s, and for local

execution, it is approximately 0.7 s.

After convergence, the average

energy consumption for both the local

and UAV-MEC servers is very low.

Fig. 4 shows the average ratio for

choosing whether to offload data or

execute it locally. Our Q-learning-

based algorithm makes an intelligent

2023년 04월 스마트미디어저널 73Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

decision to maximize the system

utility. Fig. 4 shows that, for

approximately 70% of the time, the

IoT device chooses to offload data to

the UAV-MEC server; otherwise, it

executes the task locally. The

decision is based on the deadline of

the task and the current energy level

of the IoT device.

Fig. 4. Average ratio of offloading decision

Fig. 5. Average utility

Fig. 5 is closely related to Fig. 4. As

the offloading decision is made to

maximize the system utility, Fig. 4

shows that the system utility for

UAV-MEC server execution is higher

than that for local execution. We

calculated the system utility based on

the execution cost and energy

consumption. For simplicity, we

considered the same weight for both

the execution cost and energy

consumption, i.e., . The

UAV-MEC server execution cost

depends on the data rate and

offloading time, whereas the

execution cost in IoT depends only on

the device itself.

We adopted the -greedy policy to

balance exploration and exploitation.

The reason behind using this policy is

that the algorithm is not stuck at the

local optimum; rather, it converges to

the global optimum. In an -greedy

based algorithm, the value of plays

a very important role in the

exploration and exploitation

techniques. Hence, we evaluated our

algorithm by varying the value. The

size of the input task varied between

10,000,000 and 50,000,000 bits. Fig.

6 shows the average execution cost

for different values of . The figure

that the average execution cost is

highest when and lowest when

.

Fig. 6. Execution cost with different values of

Fig. 7 shows the average energy

consumption for different values of .

The energy consumption is the lowest

with and highest when .

Finally, Fig. 8 shows the average

utility of the system with various

74 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

values of . The utility is maximum

when and minimum when

.

Fig. 7. Energy consumption with different values of

Fig. 8. Utility with different values of

VI. CONLCUSION

In this study, we proposed an

energy-aware Q-learning-based

computation offloading scheme for

UAV-based MEC systems. To

maximize the system utility, our

offloading algorithm takes decisions

intelligently based on the system

state (the deadline of the tasks and

the energy level of IoT devices). The

decision involves choosing between

offloading the data to UAV-MEC and

executing it locally. Our proposed

scheme can provide better

performance in terms of energy

consumption and execution costs. In

the future, we intend to investigate

deep Q-learning-based offloading

techniques focusing on the minimized

energy consumption.

REFERENCES

[1] S. M. A. Huda and S. Moh, “Survey on
computation offloading in UAV-
enabled mobile edge computing,”
Journal of Network and Computer
Applications, vol. 201, article no.
103341, pp. 1-26, 2022

[2] S. Poudel and S. Moh, “Task
assignment algorithms for unmanned
aerial vehicle networks: A
comprehensive survey,” Vehicular
Communications, vol. 35, article no.
100469, pp. 1-29, 2022

[3] S. Mao, S. Leng, K. Yang, X. Huang
and Q. Zhao, “Fair energy-efficient
scheduling in wireless powered
full-duplex mobile-edge computing
systems,” Proc. of 2017 IEEE Global
Communications Conf., pp. 1-6, 2017

[4] C. You, K. Huang, H. Chae and B.-H.
Kim, “Energy-efficient resource
allocation for mobile-edge computation
offloading,” IEEE Trans. on Wireless
Communications, vol. 16, no. 3, pp.
1397-1411, 2016

[5] Y. Zeng, R. Zhang and T. J. Lim,
“Wireless communications with
unmanned aerial vehicles:
Opportunities and challenges,” IEEE
Communications Magazine, vol. 54, no.
5, pp. 36-42, 2016

[6] S. W. Kim, “Prototype design for
unmanned aerial vehicle-based big
data processing,” Smart Media Journal,
vol. 5, no. 2, pp. 51-58, 2016

[7] N. H. Kim, “Development of
atmospheric environment information
collection system using drone,” Smart
Media Journal, vol. 7, no. 4, pp. 44-51,
2018

[8] Y. Zhang, B. Kim, J. Sun and J. Lee,
“Searching the damaged pine trees
from wilt disease based on deep

2023년 04월 스마트미디어저널 75Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

learning,” Smart Media Journal, vol. 9,
no. 3, pp. 46-51, 2020

[9] S. Garg, A. Singh, S. Batra, N. Kumar
and L. T. Yang, “UAV-empowered
edge computing environment for
cyber-threat detection in smart
vehicles,” IEEE Network, vol. 32, no. 3,
pp. 42-51, 2018

[10] F. Zhou, Y. Wu, R. Q. Hu and Y. Qian,
“Computation rate maximization in
UAV-enabled wireless-powered
mobile-edge computing systems,”
IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp.
1927-1941, 2018

[11] L. Yang, H. Yao, J. Wang, C. Jiang, A.
Benslimane and Y. Liu,
“Multi-UAV-enabled load-balance
mobile-edge computing for IoT
networks,” IEEE Internet of Things
Journal, vol. 7, no. 8, pp. 6898-6908,
2020

[12] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding
and F. Shu, “Path planning for
UAV-mounted mobile edge computing
with deep reinforcement learning,”
IEEE Trans. on Vehicular Technology,
vol. 69, no. 5, pp. 5723-5728, 2020

[13] S. Jeong, O. Simeone and J. Kang,
“Mobile edge computing via a
UAV-mounted cloudlet: Optimization
of bit allocation and path planning,”
IEEE Trans. on Vehicular Technology,
vol. 67, no. 3, pp. 2049-2063, 2017

[14] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao
and G. Y. Li, “Joint offloading and
trajectory design for UAV-enabled
mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1879-1892, 2018

[15] T. Zhang, Y. Xu, J. Loo, D. Yang and
L. Xiao, “Joint computation and
communication design for
UAV-assisted mobile edge computing
in IoT,” IEEE Trans. on Industrial
Informatics, vol. 16, no. 8, pp.
5505-5516, 2019

[16] J. Zhang, et al., “Stochastic
computation offloading and trajectory
scheduling for UAV-assisted mobile
edge computing,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp.
3688-3699, 2018

[17] S. Zhu, L. Gui, D. Zhao, N. Cheng, Q.
Zhang and X. Lang, “Learning-based
computation offloading approaches in
UAVs-assisted edge computing,”
IEEE Trans. on Vehicular Technology,
vol. 70, no. 1, pp. 928-944, 2021

[18] A. Al-Hourani, S. Kandeepan and S.
Lardner, “Optimal LAP altitude for
maximum coverage,” IEEE Wireless
Communications Letters, vol. 3, no. 6,
pp. 569-572, 2014

Authors

Shreya Khisa received the
B.S. degree in computer
science and engineering
from University of
Chittagong, Bangladesh in
2017 and the M.S. degree in
computer engineering from
Chosun University, Korea in

2021, respectively. She is currently pursuing
the Ph.D. degree with Concordia University,
Canada. Her research interests include
wireless communication, multiple access
techniques, and optimization.

Sangman Moh received his
Ph.D. degree in computer
engineering from the Korea
Advanced Institute of
Science and Technology
(KAIST), South Korea in
2002. Since late 2002, he
has been a professor at the
Dept. of Computer

Engineering at Chosun University, Korea. Until
2002, he was with the Electronics and
Telecommunications Research Institute
(ETRI), Korea, where he served as a project
leader since he received his M.S. degree in
computer science from Yonsei University,
Korea, in 1991. His research interests include
mobile computing and networking, ad hoc and
sensor networks, cognitive radio networks,
unmanned aerial vehicle networks, and mobile
edge computing.

76 2023년 04월 스마트미디어저널 Smart Media Journal / Vol.12, No.3 / ISSN:2287-1322

