
1

I. INTRODUCTION

In recent years, the increasing number of

vehicles has made an efficient Parking

Management System (PMS) essential for

large buildings, enabling them to provide

real-time information on the availability of

parking slots. Traditionally, PMS relies on

expensive sensor-based techniques, such

as ultrasonic sensors [1], magnetic

sensors [2][3], or a combination of both

[4][5], mounted on each parking slot to

detect the presence of a vehicle. While

these approaches offer high accuracy,

they entail additional costs in terms of

sensor expenses, installation, and

maintenance. More recently, vision-based

solutions [6][7] have emerged as a cost-

effective alternative to conventional PMS

systems that rely on hardware sensors

attached to each parking slot. However, in

existing research, cars are typically

detected for monitored parking spaces. In

our study, we employ a Fisheye camera to

detect license plates, enabling us to further

recognize the license plate number allows

us to precisely monitor when a car enters

a parking space. Fisheye lenses have

gained popularity due to their ability to

provide natural, wide, and omnidirectional

coverage, which traditional cameras with

narrow fields of view (FoV) cannot

achieve. In parking lot monitoring systems,

fisheye cameras offer advantages by

effectively reducing the number of

cameras required to cover broader views

Parking Lot Occupancy Detection using Deep

Learning and Fisheye Camera for AIoT System

To Xuan Dung, Seongwon Cho

Abstract

The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant

popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various

applications. However, deploying complex AI models on embedded boards can pose challenges

due to computational limitations and model complexity. This paper presents an AIoT-based

system for smart parking lots using edge devices. Our approach involves developing a detection

model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for

car license plate (LP) detection by verifying the position of the license plate within the parking

space.

 Keywords : AIoT | YOLOv5| Decision Tree| Fisheye Camera

* This work was supported by Hongik University and Ministry of SMEs and Startups

Manuscript : 2023.12.16

Revised : 2024.01.15

Confirmation of Publication: 2024.01.29

Corresponding Author : Seongwon Cho e-mail :

swcho@hongik.ac.kr

24 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2023.13.01.24

2

of cars and parking spaces. However,

fisheye cameras present distorted views

that require image undistortion and

unwarping techniques or dedicated

designs to handle these distortions during

processing. It is worth noting that, to the

best of our knowledge, there is currently

no open dataset available for fisheye car

object detection in surveillance

applications. Additionally, when a car is

parked, only the front of the car is visible.

In this paper, we propose the use of deep

Convolutional Neural Network [8] (CNN)

for fisheye cameras to detect the license

plate of the car, enabling us to accurately

verify the position of the car. The

decentralization of our system offers clear

advantages, including reduced

communication overhead and the

elimination of computing bottlenecks. As a

result, the system scales better as the

number of monitored parking spaces

increases. Our research presents a smart

parking lot monitoring system that utilizes

deep learning, specifically YOLOv5 [9].

We believe that our approach is

advantageous compared to systems using

ground sensors, such as magnetic sensors

placed on every parking space. With a

single fisheye camera, we can

simultaneously monitor multiple parking

lots at a significantly lower cost than

installing and maintaining sensors in each

parking lot.

II. RELATED WORK

The A comprehensive and diverse

dataset is indeed crucial for the

advancement of parking monitoring

systems. In our study, we utilized a high-

resolution, diverse, and large-scale

parking lot dataset specifically collected

for implementing our parking lot solution.

The choice of algorithms is crucial for

achieving good object detection

performance. Over the years, significant

advancements [10] [11] [12] have been

made in the field of detection models. The

success of AlexNet at the ImageNet Large

Scale Visual Recognition Challenge in

2012 [13] was a game changer in deep

learning-based detection. This led to the

development of twostage detectors, which

generate proposals and classify them as

potential objects. In recent years, one-

stage detectors have gained prominence,

classifying each region of interest as an

object or background within a single

detection pipeline.

There has been a growing emphasis on

developing smaller networks for mobile

applications, prioritizing fast inference

times and high accuracy. Several notable

models have emerged in this domain.

MobileNetV2 + SSDLite, introduced in

2018, is an improved version of the

MobileNet classification network,

combined with the SSDLite [14] detection

framework. Tiny-YOLOv4, developed as

a fast variant of YOLOv4 [15], offers

efficient object detection capabilities.

MobileDet [16], a TensorFlow-based

detection model, enhances performance on

nonGPU devices such as CPU, DSP, and

Edge TPU. Additionally, YOLOv5, based

on YOLOv3 [17], incorporates improved

augmentation and auto learning bounding

box anchors.

 In our study, we chose YOLOv5 to

compare its performance with other

published models. While there have been

2024년 01월 스마트미디어저널 25Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

3

studies utilizing the Coral TPU or

deploying state-of-the-art detection

networks on embedded devices, a

comprehensive exploration of using the

Coral TPU with SOTA models is lacking

[18] [19] [20].

In summary, a comprehensive dataset

and the selection of appropriate algorithms

are crucial for advancing parking

monitoring systems. Our study utilized a

diverse and high-resolution dataset, along

with the YOLOv5 model, to achieve

accurate and efficient object detection.

Further research is needed to explore the

utilization of SOTA models such as

YOLOv7 and YOLOv8 with the Coral TPU.

III. METHODOLOGY

1. YOLOv5

Ultralytics YOLOv5 builds upon the

success of previous YOLO versions,

introducing new features and

improvements to enhance performance

and flexibility even further. YOLOv5 is

designed to be fast, accurate, and easy to

use, making it an excellent choice for a

wide range of object detection, instance

segmentation and image classification

tasks. It has three components, including

the input layer, backbone network, neck

network, and output detection layer. An

illustration of this structure can be seen in

Figure 1.

1.1. Backbone

The backbone network plays a crucial

role in feature extraction from input

images. In the case of YOLOv5, it

leverages Cross Stage Partial Networks

[21](CSPNet) and Focus as its backbone

to effectively identify important aspects of

the input image. CSPNet addresses the

issue of redundant network optimization

gradient information within the backbone

network and reduces the redundancy

while enhancing the learning ability of

CNNs. The backbone network utilizes the

feature map from the base layer and

employs a dense block to propagate the

duplicated feature map to the next level,

thus separating the feature map from the

base layer.

1.2. Neck

The In this study, the CSP2 structure is

adopted to enhance the fusion of network

characteristics. The Neck component is

commonly used to construct feature

pyramids, as mentioned in [22], which

helps models achieve effective object

scaling generalization. By incorporating a

Neck module, the network becomes

capable of recognizing the same object at

different sizes and scales. The Neck is

designed to optimize the features

extracted by the backbone network and

typically consists of bottom-up and top-

down pathways.

Traditionally, the Neck incorporates an

up-sampling and down sampling block to

efficiently re-process and utilize the

feature maps extracted at different stages

by the backbone. This allows for effective

feature aggregation. Unlike single-shot

detectors (SSD) [23], which do not

involve a feature layer aggregation

process, the Neck plays a critical role in

the architecture of target detection models.

By leveraging the Neck component in the

network architecture, this study aims to

enhance the fusion of network

26 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

4

characteristics, enabling better object

scaling generalization and improving the

detection performance.

1.3. Head

The Head component in the object

detection process is responsible for the

final detection and classification. After

anchor boxes are applied to the feature

maps, the Head generates the final output

vectors, which include class probabilities

and bounding boxes.

The main role of the Head is to determine

the location and category of the detected

objects using the feature maps extracted

from the backbone network. In object

detection, there are generally two types of

heads: one-stage object detectors and

two-stage object detectors. The RCNN

(Region-based Convolutional Neural

Network) series is a prominent example of

two-stage detectors, which have

historically been dominant in the field of

object detection.

 Fig. 1. Structural architecture network of YOLOv5

2024년 01월 스마트미디어저널 27Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

5

In the YOLOv5 model, the Head is similar

to the YOLOv3 [24] and YOLOv4 [25]

models. It is primarily used in the final

stage of the detection process, as

mentioned in [26]. Once the anchor boxes

are applied to the feature map, the Head

generates the final output vector, which

consists of class probabilities, object

scores, and bounding boxes. Overall, the

Head component in YOLOv5 is responsible

for the crucial task of determining the

location and category of objects in the

input image. It completes the object

detection pipeline by generating the final

output vector that represents the detected

objects and their associated information.

2. Quantization

In edge and embedded technologies,

limited memory and computational

capabilities pose challenges. To mitigate

the strain on these constrained resources,

optimization techniques for TensorFlow

models have been employed. One

commonly adopted method, especially

with the Edge TPU Accelerator Module, is

model quantization. Quantization is a

valuable approach in AI modeling as it

effectively reduces latency, power

consumption, and model size while

maintaining reasonably high accuracy

levels

The deployment of deep neural networks

(DNNs) to the Edge TPU involves a

multi-step process (Figure 2), as

illustrated in Figure 2. Initially, a deep

learning model is transformed into the

TensorFlow Lite (tflite) format. The

model, initially represented in float32

precision, is then quantized to int8 or uint8

format [27]. This quantization process

reduces the precision of the model weights

and activations, making them more

compact and suitable for efficient

execution on low-power devices.

Once the model is quantized, the tflite file

is further processed by the Edge TPU

compiler. This compilation step optimizes

the model specifically for the Edge TPU,

resulting in a specialized tflite format

tailored for inference on the Edge TPU.

The optimized model is designed to take

full advantage of the hardware capabilities

of the Edge TPU, enabling efficient and

fast inference on edge devices.

By employing model quantization and the

Edge TPU compiler, the deployment of

deep learning models to the Edge TPU

becomes feasible, providing a balance

between resource utilization, inference

speed, and accuracy.

These optimization techniques enable

efficient execution of AI models on edge

and embedded devices, opening up

possibilities for deploying sophisticated AI

applications in resource-constrained

environments.

3. Decision Tree

The complete decision tree algorithm is

shown in Figure 3. Fisheye lenses provide

a wide field of view, but they introduce

distortion to the captured images, as

Fig. 2. Deployment of neural networks to the Edge TPU

28 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

6

shown in Figure 4. This distortion can pose

challenges for object detection and

training models. To address this issue, we

propose using the LaRecNet algorithm [21]

to undistort the raw images captured by

the fisheye camera.

Figure 5 demonstrates the undistorted

images after applying the LaRecNet

algorithm. By correcting the distortion, we

obtain more accurate representations of

the scene, which improves the

performance of our detection and tracking

system.

Once the images are undistorted, we

employ the YOLOv5s deep learning

algorithm to detect license plates (LP) in

the frames. To ensure reliable detection,

we set a confidence threshold of 0.90. The

detection process is performed frame by

frame, enabling real-time identification of

license plates with high accuracy.

Simultaneously, we define parking spaces

by specifying four points in each frame:

(x1, y1), (x2, y2), (x3, y3), and (x4, y4).

If a license plate is detected within a

defined parking space, we initiate tracking

using the Simple Online and Realtime

Tracking (SORT) algorithm [29]. This

tracking mechanism allows us to monitor

the movement of detected license plates

over time, enabling efficient parking space

management.

To facilitate tracking and management,

we assign unique IDs to newly detected

license plates entering the parking lot.

This ID assignment enables us to

accurately track the movement and

occupancy of parking spaces, ensuring

effective utilization of parking resources.

By combining the undistortion process

using LaRecNet, YOLOv5s for license

plate detection, deep Soft for tracking, and

the utilization of unique IDs for license

plates, our proposed system offers an

efficient and accurate solution for object

detection and tracking in parking lots using

fisheye cameras.

Fig. 3. Parking lot occupancy decision tree

 Fig. 4. Distortion image from Fisheye lenses

2024년 01월 스마트미디어저널 29Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

7

Fig. 5. Undistorted image

Fig. 6. NVIDIA Jetson Nano mainboard

Fig. 7. Accelerator Google Coral Edge TPU

IV. EXPERIMENT AND RESULTS

1. Dataset

The dataset for this study comprises

10,000 undistorted, annotated, and labeled

images collected from Hongik University

Parking Lot, each with a resolution of

2560x1280 pixels. Each image within this

dataset contains 1 to 6 bounding boxes

representing license plate object classes.

The dataset was divided into three subsets:

70% for training, 10% for validation, and

20% for testing. This common partitioning

approach is employed to prevent

overfitting and assess the model’s

performance.

2. Hardware

The models were trained on a computer

with the configuration: CPU AMD Ryzen

Threadripper 2950X @ 4.40 GHz (16

threads x 32 core), 64GB DDR4 2666MHZ

for RAM, GPU NVIDIA GeForce GTX

2080 Ti 12GB x 2, Linux Ubuntu 20.04.4

LTS and Python 3.9.12. In terms of the

embedded board, NVIDIA Jetson Nano in

Figure5 (CPU: ARM® Cortex® A57

MPCore (Quad-Core)

Processor,Maximum Operating Frequency:

1.43GHz, Maxwell GPU 128-core GPU,

Maximum Operating Frequency: 921MHz)

was used for the experimental process,

with the assistance of the accelerator

Google Coral Edge TPU in Figure 6.

3. Evaluation metrics

In our experimental evaluation, we

utilized several metrics to assess the

performance of the models: Precision (the

ratio of correctly predicted bounding

boxes to the total number of predicted

bounding boxes), Recall (the ratio of

correctly predicted bounding boxes to the

total number of ground truth bounding

boxes), F1-score (The metrics measures

the balance between precision and recall.

When the value of F1-score is high, this

means both the precision and recall are

30 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

8

high. A lower F1-score means a greater

imbalance between precision and recall),

Accuracy (represents the overall

correctness of the model’s predictions and

is calculated as the ratio of the sum of true

positives and true negatives to the total

number of samples).

Precision (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 score =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅

Accuracy =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

TP (True Positives): The number of

correctly predicted bounding boxes for the

single class. FP (False Positives): The

number of predicted bounding boxes that

do not match the ground truth for the

single class. FN (False Negatives): The

number of ground truth bounding boxes

that were not detected by the model for

the single class.

In addition to these evaluation metrics,

we also considered the inference time and

model file size. Inference time refers to the

duration taken by the model to process an

input image and make predictions. A

shorter inference time is desirable,

especially for embedded systems with

limited computational capabilities. Model

file size indicates the storage space

required to store the model’s parameters

and architecture. Minimizing the model file

size is important for efficient deployment

and management of the model, particularly

on resource-constrained devices.

4. Experimental Results

Table 1 illustrates the performance

comparison of various techniques,

presenting reported results. Our solution

consistently outperforms other methods in

both accuracy and speed. Specifically,

YOLOv5s demonstrates superior accuracy

compared to other techniques, ranging

from 2.1% to 20.7% when tested on

images from the test set. In our test set,

YOLOv5s achieves an impressive 94.3%

accuracy with an inference time of 0.071

seconds, surpassing the best compared

method, YOLOv4, which attains 92.2%

accuracy with an inference time of 0.094

seconds. This makes YOLOv5s 2.1% more

accurate and 0.023 seconds faster, with

the model input size being the highest at

640x640 pixels. On the other hand, SSD

MobileNetV2, with the highest inference

time of 0.042 seconds, exhibits a lower

accuracy of only 73.6%. Despite its faster

runtime, the model's input size is the

lowest at 300x300 pixels. When compared

with our YOLOv5 model, SSD

MobileNetV2 is 20.7% less accurate and

only 0.029 seconds faster.

Model Input size Precision Recall F1score Accuracy Speed (ms) File Size (MB)
EfficientDet Lite0 [30] 320x320 0.957 0.869 0.911 83.6 % 0.172 6.12
EfficientDet Lite1 [30] 384x384 0.962 0.871 0.914 84.2 % 0.261 8.24
EfficientDet Lite2 [30] 448x448 0.981 0.908 0.943 89.2 % 0.537 10.75
SSD Mobilenetv2 [14] 300x300 0.946 0.768 0.848 73.6 % 0.042 7.21

SSDLite MobileDet [16] 320x320 0.953 0.794 0.866 76.4 % 0.462 6.42
YOLOv3 [17] 608x608 0.971 0.872 0.919 85.0 % 0.153 10.64

YOLOv4 [15] [31] 640x640 0.986 0.934 0.959 92.2 % 0.094 9.85
YOLOv5s [9] 640x640 0.991 0.952 0.971 94.3 % 0.071 8.04

Table 1. Model comparison

2024년 01월 스마트미디어저널 31Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

9

Figure 8 showcases the testing setup at

a real-time parking lot where the

evaluation phase took place. The figure

displays the availability of parking spaces,

with spaces 1, 2, and 5 indicated as green

color, signifying their availability. As

shown, a car was about to enter parking

space number 1 but was not fully inside,

resulting in our model detecting the

license plate position outside the

designated parking space. Parking spaces

3, 4, and 6 already had cars parked shown

in red color, and our model successfully

tracked and assigned IDs to monitor their

status.

V. CONCLUSION

In this study, we have successfully

applied the YOLOv5s deep learning

algorithm in conjunction with a proposed

decision tree to develop a smart parking

lot system capable of detecting the

occupancy status of parking spaces and

monitoring the position of parked cars.

The YOLOv5s algorithm, known for its

efficiency and accuracy in object detection,

was chosen as the backbone of our system.

We quantized the model to optimize its

performance and facilitate its deployment

on resource-constrained devices. The

algorithm was successfully run on the

Jetson Nano mainboard and the Google

Coral Edge TPU accelerator,

demonstrating its versatility across

different hardware platforms.

To make the final determination of the

parking space status, we introduced a

decision tree. This decision tree takes into

account various factors, such as the

presence of license plates, the position of

the detected vehicles, and the defined

parking space boundaries. By combining

the outputs of the YOLOv5s algorithm and

the decision tree, we were able to

accurately assess the availability of

parking spaces in real-time.

The results of our comparative analysis

against other techniques clearly indicated

the superiority of the proposed algorithm.

Our approach achieved robustness in

accurately detecting parking space

occupancy, while also demonstrating

faster processing times and a smaller

Fig. 8. Real time testing results

32 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

10

model file size compared to alternative

methods. This highlights the efficiency and

effectiveness of our system in practical

applications.

Looking ahead, our future research

endeavors will focus on

exploring more optimized methods to

further enhance the speed and reduce the

size of the model without compromising its

performance. This will involve

investigating techniques such as model

compression, knowledge distillation, and

network architecture design. By

continuously improving the efficiency and

effectiveness of our system, we aim to

provide even more reliable and efficient

solutions for smart parking lot

management.

REFERENCES

[1] Mingkai Chen and Tianhai Chang,

"A parking guidance and information
system based on wireless sensor
network," 2011 IEEE International
Conference on Information and
Automation, Shenzhen, China, pp. 601-

605, 2011.

[2] E. Sifuentes, O. Casas and R.

Pallas-Areny, "Wireless Magnetic
Sensor Node for Vehicle Detection With
Optical Wake-Up," in IEEE Sensors
Journal, vol. 11, no. 8, pp. 1669-1676,

Aug. 2011.

[3] Z. Zhang, M. Tao and H. Yuan, "A
Parking Occupancy Detection Algorithm
Based on AMR Sensor," in IEEE Sensors
Journal, vol. 15, no. 2, pp. 1261-1269,

Feb. 2015.

[4] Alam, M., Moroni, D., Pieri, G.,

Tampucci, M., Gomes, M., Fonseca, J.,

Ferreira, J. and Leone, G.R., 2018. Real-

time smart parking systems integration

in distributed ITS for smart cities.

Journal of Advanced transportation,

2018.

[5] Joseph, J., Patil, R.G., Narahari,

S.K.K., Didagi, Y., Bapat, J. and Das, D.,

2014. Wireless sensor network based
smart parking system. Sensors &
Transducers, vol .162, no. 1, pp. 5-10,

2014.

[6] Cai, B.Y., Alvarez, R., Sit, M.,

Duarte, F. and Ratti, C., 2019. Deep

learning-based video system for

accurate and real-time parking

measurement. IEEE Internet of Things
Journal, vol. 6, no. 5, pp.7693-7701.

[7] Cho, W., Park, S., Kim, M.J., Han, S.,

Kim, M., Kim, T., Kim, J. and Paik, J.,

2018, January. Robust parking

occupancy monitoring system using

random forests. In 2018 International
Conference on Electronics, Information,
and Communication (ICEIC), pp. 1-4.

[8] S. Albawi, T. A. Mohammed, and S.

Al-Zawi, “Understanding of a

convolutional neural network,” in 2017

international conference on engineering

and technology (ICET), pp. 1–6, Ieee,

2017.

[9] G. Jocher, “YOLOv5 by ultralytics.”
https://github.com/ ultralytics/yolov5,

2020 (accessed sep., 10, 2023).

[10] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and

X. Wu, “Object detection with deep

learning: A review,” IEEE transactions

on neural networks and learning systems,

vol. 30, no. 11, pp. 3212–3232, 2019.

[11] X. Wu, D. Sahoo, and S. C. Hoi,

“Recent advances in deep learning for

object detection,” Neurocomputing, vol.

396, pp. 39–64, 2020.

[12] L. Jiao, F. Zhang, F. Liu, S. Yang, L.

Li, Z. Feng, and R. Qu, “A survey of deep

learning-based object detection,” IEEE

access, vol. 7, pp. 128837–128868, 2019.

[13] A. Krizhevsky, I. Sutskever, and G.

E. Hinton, “Imagenet classification with

deep convolutional neural networks,”
Communications of the ACM, vol. 60, no.

6, pp. 84–90, 2017.

2024년 01월 스마트미디어저널 33Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

11

[14] M. Sandler, A. Howard, M. Zhu, A.

Zhmoginov, and L.-C. Chen,

“Mobilenetv2: Inverted residuals and

linear bottlenecks,” in Proceedings of the

IEEE conference on computer vision and

pattern recognition, pp. 4510–4520,

2018.

[15] A. Bochkovskiy, C.-Y. Wang, and

H.-Y. M. Liao, “Yolov4: Optimal speed

and accuracy of object detection,” arXiv

preprint arXiv:2004.10934, 2020.

[16] Y. Xiong, H. Liu, S. Gupta, B. Akin,

G. Bender, Y. Wang, P.-J. Kindermans,

M. Tan, V. Singh, and B. Chen,

“Mobiledets: Searching for object

detection architectures for mobile

accelerators,” in Proceedings of the

IEEE/CVF conference on computer

vision and pattern recognition, pp. 3825–
3834, 2021.

[17] J. Redmon and A. Farhadi, “Yolov3:

An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.

[18] A. Ghosh, S. A. Al Mahmud, T. I. R.

Uday, and D. M. Farid, “Assistive

technology for visually impaired using

tensor flow object detection in raspberry

pi and coral usb accelerator,” in 2020

IEEE Region 10 Symposium

(TENSYMP), pp. 186–189, IEEE, 2020.

[19] A. Yazdanbakhsh, K. Seshadri, B.

Akin, J. Laudon, and R. Narayanaswami,

“An evaluation of edge tpu accelerators

for convolutional neural networks,” arXiv

e-prints, pp. arXiv–2102, 2021.

[20] V. Mazzia, A. Khaliq, F. Salvetti,

and M. Chiaberge, “Realtime apple

detection system using embedded

systems with hardware accelerators: An

edge ai application,” IEEE Access, vol. 8,

pp. 9102–9114, 2020.

[21] C.-Y. Wang, H.-Y. M. Liao, Y.-H.

Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H.

Yeh, “Cspnet: A new backbone that can

enhance learning capability of cnn,” in

Proceedings of the IEEE/CVF
conference on computer vision and

pattern recognition workshops, pp. 390–
391, 2020.

[22] Z. Li and F. Zhou, “Fssd: feature

fusion single shot multibox detector,”
arXiv preprint arXiv:1712.00960, 2017.

[23] D. Biswas, H. Su, C. Wang, A.

Stevanovic, and W. Wang, “An automatic

traffic density estimation using single

shot detection (ssd) and mobilenet-ssd,”
Physics and Chemistry of the Earth,

Parts A/B/C, vol. 110, pp. 176–184, 2019.

[24] J. Redmon and A. Farhadi, “Yolov3:

An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.

[25] D. Wu, S. Lv, M. Jiang, and H. Song,

“Using channel pruning-based yolo v4

deep learning algorithm for the real-

time and accurate detection of apple

flowers in natural environments,”
Computers and Electronics in
Agriculture, vol. 178, p. 105742, 2020.

[26] B. Jiang, R. Luo, J. Mao, T. Xiao,

and Y. Jiang, “Acquisition of localization

confidence for accurate object detection,”
in Proceedings of the European
conference on computer vision (ECCV),

pp. 784–799, 2018.

[27] “Post-training quantization.”
https://www.tensorflow.org/lite/perform

ance/post training quantization(accessed

sep., 20, 2023).

[28] Z.-C. Xue, N. Xue, and G.-S. Xia,

“Fisheye distortion rectification from

deep straight lines,” arXiv preprint

arXiv:2003.11386, 2020.

[29] N. Wojke, A. Bewley, and D. Paulus,

“Simple online and realtime tracking with

a deep association metric,” in 2017 IEEE

international conference on image

processing (ICIP), pp. 3645–3649, IEEE,

2017.

[30] M. Tan, R. Pang, and Q. V. Le,

“Efficientdet: Scalable and efficient

34 2024년 01월 스마트미디어저널 Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

12

object detection,” in Proceedings of the

IEEE/CVF conference on computer
vision and pattern recognition, pp.

10781–10790, 2020.

[31] WongKinYiu,“Yolov4. ”https://githu

b.com/WongKinYiu/PyTorch YOLOv4,

2020.

[32] M. Tan, R. Pang, and Q. V. Le,

“Efficientdet: Scalable and efficient

object detection,” in Proceedings of the

IEEE/CVF conference on computer
vision and pattern recognition, pp.

10781–10790, 2020.

Authors

To Xuan Dung

He received B.S degree in

control and automation

engineering from Hanoi

University of Science and

Technology, Vietnam and M.S

degree from Hongik University, Korea.

Seongwon Cho

He received his B.S. degree

from Seoul National

University, Korea in 1982, He

received his MS and Ph.D

degrees from Purdue

University, West Lafayette, Indiana, USA in

1987 and 1992, respectively. He has been a

professor of Hongik University, Seoul, Korea.

2024년 01월 스마트미디어저널 35Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322

