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Abstract 

Identifying plant species and diseases is crucial for maintaining biodiversity and achieving optimal 

crop yields, making it a topic of significant practical importance. Recent studies have extended 

plant disease recognition from traditional closed-set scenarios to open-set environments, where 

the goal is to reject samples that do not belong to known categories. However, in open-world 

tasks, it is essential not only to define unknown samples as "unknown" but also to classify them 

further. This task assumes that images and labels of known categories are available and that 

samples of unknown categories can be accessed. The model classifies unknown samples by 

learning the prior knowledge of known categories. To the best of our knowledge, there is no 

existing research on this topic in plant-related recognition tasks. 

To address this gap, this paper utilizes knowledge distillation to model the category space 

relationships between known and unknown categories. Specifically, we identify similarities 

between different species or diseases. By leveraging a fine-tuned model on known categories, 

we generate pseudo-labels for unknown categories. Additionally, we enhance the baseline 

method's performance by using a larger pre-trained model, dino-v2. We evaluate the 

effectiveness of our method on the large plant specimen dataset Herbarium19 and the disease 

dataset Plant Village. Notably, our method outperforms the baseline by 1% to 20% in terms of 

accuracy for novel category classification. We believe this study will contribute to the community.  
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I. INTRODUCTION 

Identifying plant species and diseases is 

crucial for maintaining biodiversity and 

achieving expected crop yields. Over the 

past decade, deep learning has shown 

tremendous success in plant-related 

areas [1-7]. However, many models 

heavily rely on the availability of large 

amounts of labeled data for all relevant 

categories. This dependence introduces a 

significant issue: standard classification 

models may erroneously classify 

instances that do not belong to any known 

category as belonging to one of the known 

categories [8,9]. This phenomenon is 

particularly common in neural networks 

when dealing with semantically related 

inputs. 

Recent advancements in open-set 

recognition and open-world scenarios 

have addressed this issue [3,9]. Open-set 
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recognition aims to exclude unknown 

samples through regularization loss or 

post-hoc out-of-distribution (OOD) 

detection. For instance, Meng et al.[10] 

used additive margin softmax loss to make 

the feature distribution of known 

categories more compact, facilitating the 

identification of unknown samples through 

regularization methods. However, these 

open-world methods typically do not 

cluster unknown categories, leaving the 

unlabeled data underutilized and 

potentially wasting data resources. In 

another study, Dong et al. [3] discovered 

that a model trained on tomato powdery 

mildew disease could also detect powdery 

mildew disease on pepper leaves. This 

experiment inspired our exploration of the 

relationships between plant diseases or 

species categories. In other words, 

effectively utilizing category relationships 

may assist in classifying unknown samples. 

This challenge is defined as novel 

category discovery. 

Both open-set recognition and novel 

category discovery belong to open-world 

tasks.  We illustrate the differences 

between open-set recognition and novel 

category discovery in Fig. 1. As shown in 

Fig.  1, in open-set recognition, the 

model is typically trained only on labeled 

categories. During the testing phase, the 

model is required to classify known 

categories and identify unknown samples 

[11]. While in the novel category 

discovery task, we assume that samples 

from these unknown categories have 

already been obtained. The model trains 

on both labeled samples and these 

unknown samples, with the understanding 

that unknown categories do not overlap 

with known categories. The model then 

aims to further classify the unknown 

samples. 

We argue that extracting category 

relationships through knowledge 

 
Fig. 1. Comparison of Open-Set Recognition (A) and Novel Class Discovery (B): Training and testing stages involved 
in each approach. (A) Open-Set Recognition: The training stage involves labeled classes, and the testing stage requires 

identifying known classes and rejecting unknown classes. (B) Novel Class Discovery: The training stage includes 
labeled classes and unknown samples, with the testing stage focusing on classifying both known classes and novel 

classes. 

2024년 7월 스마트미디어저널 37Smart Media Journal / Vol.13, No.7 / ISSN:2287-1322



distillation [12] is highly applicable to 

plant-related research. For example, 

different plant diseases may exhibit similar 

symptoms. Therefore, we employ a 

knowledge distillation framework to 

achieve novel category discovery related 

to plants. Additionally, we observed that 

methods based on large-scale pre-

trained models achieve remarkable 

performance gains in various downstream 

tasks. Consequently, we utilize state-of-

the-art models Dino-v1 [13] and Dino-

v2 [14] to initialize the feature extraction 

network and enhance the system's 

performance. 

 

II. RELATED WORK 

2.1 Novel Class Discovery 

Novel Category Discovery (NCD) aims to 

identify new categories within unlabeled 

data by leveraging prior knowledge of 

known categories [8]. The core idea 

behind NCD is that having a set of known 

categories allows an appropriate method 

to enhance its performance by extracting 

the general concepts that constitute well-

defined categories. Traditional NCD 

problems do not consider the classification 

of both known and unknown categories, an 

issue addressed by open-set recognition 

tasks. In other words, traditional NCD 

problems assume that only novel 

categories are classified during testing [8]. 

UNO [15] proposes a more practical 

evaluation framework, assuming that the 

model will encounter both labeled and 

novel categories during testing. Therefore, 

the model needs to classify both labeled 

and novel categories simultaneously. This 

approach is referred to as an evaluation 

scheme independent of the NCD task. 

Moreover, UNO argues that certain three-

stage methods—self-training on labeled 

and unlabeled data, fine-tuning on labeled 

data, and discovering new classes on 

unlabeled data—do not yield performance 

gains in the final novel category discovery. 

Consequently, they skip the first stage and 

directly fine-tune the pre-trained model 

on the labeled dataset to achieve novel 

category discovery. Our approach follows 

this two-stage training strategy. 

2.2 Knowledge distillation 

Knowledge distillation [16] aims to 

transfer knowledge from a teacher model 

 
Fig. 2. Class relation distribution of apple leaf disease (test on a model fine-tuned on tomato leaf diseases dataset). 
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to a student model. This process uses the 

probability distribution from the teacher 

model to supervise unlabeled samples, a 

technique commonly employed in semi-

supervised and weakly supervised tasks. 

In the context of plant disease and species 

identification, we found that features or 

symptoms of certain diseases may appear 

similar on different plant leaves. 

Therefore, we use knowledge distillation 

to extract relationships between known 

and unknown categories, thereby 

improving the representation learning of 

novel categories. 

 

III. MATERIAL AND METHODS 

3.1 Data Split 

Table 1 demonstrates the dataset splits for 

Herbarium19 and Plant Village. 

Herbarium19 [17] is a plant specimen 

dataset, while Plant Village [18] is a plant 

disease dataset. In the Plant Village 

dataset, subsets A, C, G, P, H, and D 

correspond to Apple, Corn, Grape, Potato, 

Healthy, and Other Diseases, respectively. 

The 10 classes of tomato diseases in Plant 

Village serve as labeled categories, with 

the other subsets treated as novel 

categories. 

The labeled set of Plant Village 

consistently includes 18,159 images 

across 10 classes, while the novel set 

contains varying numbers of images and 

classes, representing different plant 

diseases or healthy conditions. In contrast, 

Herbarium19 has 18,348 images in 341 

classes for the labeled set and 18,556 

images in 342 classes for the novel set. 

This setup facilitates distinguishing 

between known and unknown categories, 

supporting tasks such as novel category 

discovery and open-set recognition. 

3.2 Methods 

The premise of our method is that there 

exists semantic relatedness between 

unknown and known classes. Fig. 2 

supports the validity of this assumption. 

Initially, we fine-tune a pre-trained 

model using labeled data and then test the 

model with unlabeled data. The results 

indicate that approximately 60% of ‘apple 

black rot’ leaves disease are classified as 

‘tomato septoria leaf spot’ leaves, and over 

80% of ‘apple cedar rust’ leaves are 

classified as ‘tomato late blight’ leaves. 

This suggests a degree of correlation in 

the symptoms of leaf diseases across 

different species. 

Based on this similarity assumption, we 

employ a knowledge distillation framework 

for novel category discovery. As 

illustrated in Fig. 3, our approach involves 

two main stages: i. Fine-tuning the Pre-

Trained Encoder: In the first stage, we 

fine-tune a pre-trained encoder using 

labeled data. This step encourages the 

model to learn category-specific 

knowledge relevant to the domain; ii. 

Novel Category Discovery: In this stage, 

we use the fine-tuned model from the 

Table 1. Dataset splits. Note that the Labeled set 

of Plant Village is a Tomato subset, which includes 

ten classes. 

Dataset 
Labeled Set Novel Set 

Images Classes Images Classes 

Herbarium19 18348 341 18556 342 

Plant Village(A) 18,159 10 3,171 4 

Plant Village(C) 18,159 10 3,852 4 

Plant Village(G) 18,159 10 4,062 4 

Plant Village(P) 18,159 10 2,152 3 

Plant Village(H) 18,159 10 10,110 7 

Plant Village(D) 18,159 10 12,797 6 
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previous stage as the teacher model to 

guide the clustering of new categories. For 

unlabeled data, we use knowledge 

distillation to establish category 

relationships between unknown and known 

samples, denoted as 𝐿ௗ
௨  in Fig. 3. 

Additionally, we adopt the self-training 

method proposed in UNO [15] to generate 

pseudo-labels. This approach achieves 

weakly supervised learning by 

constructing a unified loss function. For 

further details on the self-training method 

and the implementation of the unified loss 

function, we refer readers to UNO [15]. 

This two-stage strategy leverages the 

relationships between known and unknown 

categories, enabling effective novel 

category discovery. 

3.3 Protocol and Metrics 

We use two evaluation settings to assess 

our model: task-aware and task-agnostic. 

As shown in the discovery phase in Fig. 3, 

we obtain two classification heads after 

training. In task-aware evaluation, we use 

the labeled classifier for images belonging 

to labeled classes and the unlabeled 

classifier for images belonging to 

unlabeled classes. This type of evaluation 

is typically used in traditional NCD tasks. 

However, in real-world scenarios, this 

evaluation is less meaningful because it 

does not assess whether the model can 

distinguish between labeled and unlabeled 

classes. Therefore, we also report task-

agnostic accuracy. In this evaluation, we 

concatenate the logits output from both 

classification heads and predict the most 

probable output, eliminating the need to 

differentiate between labeled and novel 

categories in the test set beforehand. For 

labeled categories, we use accuracy to 

evaluate performance. For unlabeled 

categories, we employ the Hungarian 

algorithm [19] to find the optimal 

permutation that matches the true labels of 

the unknown classes with the predicted 

 
Fig. 3. Framework of our method. In the pre-training stage, labeled classes are encoded and processed through a known 
head to generate logits and calculate the cross-entropy loss. In the discovery training stage, both labeled and unknown 
(unlabeled) classes are encoded, producing logits through both known and unknown heads. These logits are combined 
and processed through a unified cross-entropy loss, with knowledge distillation loss applied to improve representation 

learning of novel classes. 
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labels. We then calculate the clustering 

accuracy based on this optimal matching. 

 

IV. EXPERIMENTS 

4.1 Implementation details 

We provide implementation details in 

Table 2. Note that PS and DS denote pre-

training stage and discovery stage, 

respectively. 

 

4.2 Result 

Table 3 presents the main results of our 

experiments, evaluating the performance 

of our method on various datasets using 

Dino-v1 and Dino-v2 pretrained models. 

The datasets include Herbarium19 and 

multiple subsets of Plant Village (A, C, G, 

P, H, D). We report the pretrained 

accuracy, task-aware novel accuracy, and 

task-agnostic accuracy for both novel and 

labeled classes. 

The pretrained accuracy for Dino-v1 and 

Dino-v2 remains consistent across the 

Plant Village datasets at 99.80%, indicating 

a high level of feature extraction from the 

pretrained models. For Herbarium19, the 

pretrained accuracy is notably lower, with 

Dino-v1 at 74.31% and Dino-v2 

significantly higher at 85.28%. 

In the task-aware evaluation, we observe 

varied performance across datasets. For 

Herbarium19, the novel accuracy for 

Dino-v1 and Dino-v2 is 26.77% and 

34.71%, respectively. In the Plant Village 

subsets, the novel accuracy ranges from 

57.63% to 82.69% for Dino-v1 and from 

56.93% to 86.93% for Dino-v2. This 

indicates that Dino-v2 consistently 

outperforms Dino-v1 in identifying novel 

categories within the task-aware setting. 

The task-agnostic evaluation shows the 

overall accuracy (All), novel accuracy, and 

labeled accuracy. For Herbarium19, the 

task-agnostic overall accuracy improves 

to 33.75% for Dino-v1 and 39.03% for 

Dino-v2, highlighting the advantage of 

Dino-v2 in a more realistic evaluation 

scenario. For the Plant Village subsets, 

Dino-v2 again shows superior 

performance, with task-agnostic novel 

accuracy ranging from 54.89% to 88.98% 

and labeled accuracy consistently high, 

nearing 100% in most cases. Dino-v1 also 

 
Fig. 4. UMAP visualization of herbarium19 and plant 
village datasets in the pre-training stage. We display 
UMAP visualizations of the Herbarium19 and Plant 
Village datasets at Epoch 0 and Epoch 50 in the pre-

training stage. The color scale indicates different classes 
within the datasets. The pre-training model is dino-v2. 

 

Table 2. Environment and Hyper-Parameters. 

Item / Parameter Value / Details 

Framework Pytorch 3.8 

Encoder ViT-base 

Batch size 256 

Decay Cosine annealing 

Pre-training Stage 50 epochs 

Learning Rate (PS) 0.05-0.001 

Discovery Stage 100 epochs 

Learning Rate (DS) 0.001-0.0001 

UMAP Visualization UMAP library 

Pretraining Model Dino-v1/v2 
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performs well but lags behind Dino-v2 in 

novel class recognition. 

We utilized UMAP to visualize the feature 

distribution in the pretrained models, as 

shown in Fig. 4. In the feature distribution 

plots at epoch 0, both datasets appear very 

disorganized. However, after fine-tuning 

for 50 epochs, we observed that most 

categories have clear boundaries. This is 

particularly evident in the Plant Village 

dataset. Such effective feature extraction 

significantly aids in the clustering of novel 

categories during the discovery phase. 

These results demonstrate the 

effectiveness of our method, particularly 

with the Dino-v2 model, in both task-

aware and task-agnostic evaluations. The 

clear feature boundaries achieved after 

fine-tuning underscore the potential of 

our approach in practical applications 

involving novel category discovery and 

open-set recognition. 

 

V. CONCLUSION 

In this study, we found that the 

relationships between different species or 

diseases are intuitively important for novel 

category discovery. We employed a 

knowledge distillation framework to 

extract relationships between known and 

unknown categories, facilitating novel 

category discovery. Our experimental 

results demonstrate the effectiveness of 

our proposed method. Additionally, using 

Dino-v2 to initialize our model achieved 

better performance compared to Dino-v1, 

especially in the accuracy of recognizing 

novel categories. This indicates that our 

framework is compatible with larger pre-

trained models. UMAP visualizations also 

confirmed the robustness of our proposed 

method. Furthermore, the task-agnostic 

evaluation revealed the practical 

applicability of our method, confirming its 

suitability for real-world scenarios where 

distinguishing between known and novel 

categories is crucial. Overall, this task is 

the first to apply novel category discovery 

Table 3. Main results. We used Dino-v1 and Dino-v2 to initialize the pre-trained models, 

respectively. 

Dataset Pretrained model 
Pretrained 
Accuracy 

Task-aware Task-agnostic 

Novel All Novel Labeled 

Herbarium19 
Dino-v1 74.31 26.77 48.92 33.74 64.19 

Dino-v2 85.18 34.71 58.47 39.03 78.05 

Plant Village(A) 
Dino-v1 99.80 63.95 93.91 61.66 99.51 

Dino-v2 99.80 63.98 94.00 61.47 99.65 

Plant Village(C) 
Dino-v1 99.80 66.91 94.10 67.12 99.67 

Dino-v2 99.80 69.01 94.38 67.54 99.92 

Plant Village(G) 
Dino-v1 99.80 77.76 95.94 79.16 99.78 

Dino-v2 99.80 89.11 97.84 88.98 99.87 

Plant Village(P) 
Dino-v1 99.80 82.69 97.81 81.46 99.73 

Dino-v2 99.80 86.93 98.22 85.85 99.67 

Plant Village(H) 
Dino-v1 99.80 57.63 84.31 56.41 99.74 

Dino-v2 99.80 56.93 83.87 54.89 99.90 

Plant Village(D) 
Dino-v1 99.80 63.62 85.01 63.84 99.79 

Dino-v2 99.80 67.02 86.40 67.07 99.90 
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to the field of plant species and disease 

recognition. We believe this study will 

contribute to the community. 
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