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A Stacked CNN Approach for Accurate Classification of
AD Severity from T1—Weighted MRI Slices

Vyshnavi Ramineni, Goo-Rak Kwon

This paper proposes a stacked convolutional neural network (CNN) architecture for classifying
Alzheimer’s disease (AD) severity using T1—weighted MRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). 3D MRI volumes are preprocessed through intensity correction,
spatial normalization to a standard template, and skull stripping, then sliced into informative 2D
images based on anatomical landmarks and entropy measures. Data augmentation techniques
further enhance the dataset while reducing overfitting. The stacked CNN, fine—tuned via transfer
learning, extracts both local details and global structural features crucial for distinguishing healthy
controls, mild cognitive impairment, and AD. A hybrid loss function combining cross—entropy and
triplet loss improves the model’s discriminative power by clustering similar features and
maximizing inter—class separation. Experimental results indicate high classification accuracy and
robust performance, highlighting the potential of our approach for early AD diagnosis and severity
assessment.
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I. INTRODUCTION

Alzheimer's disease (AD) remains one of

the most challenging neurodegenerative
disorders, with its insidious onset and
progressive decline in cognitive and
functional abilities.[1], [2]

accurate detection is critical for timely

Early and

intervention and can potentially slow
disease progression, thereby improving

patients’ quality of life and reducing the

long—term economic and social burdens
associated with dementia. In recent years,
techniques,

advanced neuroimaging

particularly structural magnetic resonance
(sMRI)—have

indispensable tools for investigating the

imaging become

pathological changes associated with AD.
T1—weighted[3] MRI, known for its high
spatial resolution and detailed anatomical
contrast, provides crucial information on
brain atrophy and other structural
alterations that occur during the disease

progression.

The Alzheimer's Disease Neuroimaging
Initiative (ADNI) has been instrumental in
collecting large—scale, high—quality T1—
weighted MRI datasets that facilitate
research into the early diagnosis of AD
[4]. However, the
dimensional nature of these images poses

inherent three—
computational challenges, especially when
deep learning models are applied directly
to volumetric data. To mitigate these
challenges, many studies have adopted a
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preprocessing pipeline that involves
transforming the 3D MRI volumes into 2D
slices. This approach not only reduces
computational complexity but also allows
the wuse of well—established two—
dimensional convolutional neural network
(CNN) architecture without a significant
loss of diagnostic information [5].

Our work builds on recent advances in

CNN-based Alzheimer's disease

classification by integrating a stacked CNN
architecture. Stacked methods allow for
the sequential learning of features across
multiple layers, capturing both low—level
local patterns such as subtle changes in
gray matter intensity and high—level
global structural information such as
overall brain atrophy. Such a hierarchical
approach has been shown to outperform
conventional CNN models that rely solely
on a monolithic structure, as stacking
facilitates a more nuanced understanding
of complex brain patterns associated with
different stages of AD [4], [6].

In our proposed methodology, T1-
welghted MRI images from the ADNI
database are first preprocessed to
standardize the imaging data and correct

for any intensity non—uniformities. The
3D MRI volumes are then spatially
normalized to a standard brain template,
and non—brain tissues are removed via
skull-stripping techniques. Next,[7],
[8]the preprocessed 3D volumes are
sliced into 2D images. This step is crucial
because it enables us to leverage efficient
2D CNN architecture while still capturing
the  critical anatomical information
contained within the 3D data. By carefully

selecting the most informative slices—

often guided by entropy or anatomical
landmarks, the approach ensures that
essential features for disease
classification are retained [9].

The core of our analysis employs a
stacked CNN architecture, which is
designed to address two main challenges
in AD diagnosis: the subtlety of early
pathological changes and the need for
efficient computation. The stacked CNN
approach involves training multiple
independent convolutional blocks
sequentially, where each block is
responsible for learning features at a
progressively higher level of abstraction.
Early blocks capture fine—grained, local
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details, while deeper blocks aggregate this
information into more abstract
representations that are indicative of
global brain changes. This multi—level

feature extraction mechanism enhances
the network's ability to discriminate

between healthy controls, mild cognitive
impairment (MCI), and full-fledged
ADI[5].

Moreover, by employing stacking
techniques, our network mitigates the risk

of overfitting—a common challenge when

working  with limited datasets—by

distributing the learning process across
multiple layers. Each stacked module
refines the features extracted by its
predecessor, leading to a robust
representation that is both noise—tolerant
and highly
architectures have

discriminative. Such
demonstrated
impressive performance In previous
studies, where a combination of local and
global contextual features was key to
achieving high classification accuracy [4],

[6].

Our study extends these approaches by
specifically tailoring the preprocessing and
feature extraction pipeline to T1—weight
MRI data from ADNI. By slicing the 3D
images into 2D planes and then feeding
these into a stacked CNN framework, we
capitalize on the rich information present
in high—resolution MR images while
maintaining computational efficiency. The
subsequent layers of the CNN further
process these features to enable accurate

classification of Alzheimer's disease

severity. This strategy not only improves
diagnostic performance but also offers a
scalable solution suitable for clinical

applications where rapid and reliable

analysis is essential.

1. METHODOLOGY

2.1 Experiment Design and Data
Collection
Our study follows a  structured

experimental design aimed at accurately
classifying Alzheimer's disease (AD)

severity using T1-—weighted structural
MRI data. The primary objective is to
develop a robust deep learning model that
leverages stacked convolutional neural
network (CNN) architectures to extract
both local and global features from
preprocessed 2D MRI slices. The
experimental design was structured to
ensure reproducibility and to optimize
performance on data obtained from the

Alzheimer’s Disease Neuroimaging

Initiative (ADNI).
Data Source:
T1-—weighted MRI scans were obtained

from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database
(https://adni.loni.usc.edu). ADNI is a
widely recognized repository that collects
imaging, genetic, clinical, and biomarker
data, serving as an essential resource for
AD research.

Participant Selection:

A subset of subjects was selected from the
ADNI database to ensure a balanced
representation across diagnostic
categories, including healthy controls

(HC), mild cognitive impairment (MCI),
and full-blown Alzheimer's disease (AD)

as shown in Table 1. Inclusion criteria



required subjects to be over 60 years of
age, to have a confirmed diagnosis based
on standard clinical assessments, and to
have high—quality, intensity—corrected
T1—weighted images.

Table 1. Subject taken from the ADNI

Group No.of Subjects Age Range
AD 60 72.65+ 8.6
LMCI 60 76.80 £ 6.9
EMCI 60 74.83 £ 6.1
HC 60 75.83 £5.7

2.2 Preprocessing Procedures

Given the inherent complexity of
processing full 3D MRI volumes, we
implemented a series of standardized
preprocessing steps to optimize the
dataset for 2D CNN analysis.

Intensity Correction and Registration:
Each 3D MRI volume was subjected to
intensity inhomogeneity corrections using
methods such as N3 bias field correction.
Subsequently, the volumes were spatially
normalized by registering them to a
standard brain template using
neuroimaging software packages such as
FSL and SPM. Skull stripping was then
performed to remove non—brain tissues.
3D—to—2D
computational complexity, each 3D volume

Slicing:To reduce

was sliced into a series of 2D images. The
most informative slices were selected
based on anatomical landmarks the
hippocampus and entropy measurements,
ensuring that both local details and global
structural changes were preserved.

Image Standardization and Augmentation:
The resulting 2D slices were resized to a

uniform resolution 128 x 128 pixels to

ensure consistency across the dataset. To
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further increase the diversity of the
training data and to mitigate overfitting,

data augmentation techniques—including

rotation, flipping, scaling, and shifting—

were applied.

2.3 Feature Extraction

Stacked CNN Design: This core
methodology employs stacked CNN
architecture. This involves a series of
sequential convolutional blocks, where
each  block
progressively higher levels of abstraction.

extracts  features  at
Early convolutional layers capture fine,
local details such as subtle tissue intensity
variations, whereas deeper layers
aggregate these details into high—level
representations that reflect global brain
atrophy.

Transfer Learning and Fine—Tuning: To
leverage existing knowledge and expedite
model convergence, pre—trained CNN
weights from models VGG, ResNet and
MobileNet were used as initialization.
These models were subsequently fine—
tuned on our ADNI—derived dataset,
ensuring that the learned features were
well adapted to the specific characteristics
of T1—weighted MRI data.

Loss Functions: To enhance the
discriminative power of the network, we
employed a composite loss function that
combines cross—entropy loss with
additional regularization triplet loss. This
dual—loss approach helps cluster features
from the same diagnostic category
together while maximizing the separation
between different categories.

2.4 Architecture of the Experiment.
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Our architecture begins by ingesting
standardized 2D slices extracted from 3D
T1—weighted MRI volumes. These slices
serve as Input to a series of initial
convolutional layers designed to capture
fine—grained local features. The network
leverages transfer learning by initializing
with pre—trained weights from models,
which are then fine—tuned on our specific
ADNI dataset. This initialization ensures
that the model benefits from rich, generic
feature representations that are later
adapted to the nuances of structural MRI
data, thus reducing the need for extensive
training from scratch.

At the core of the design, a stacked
arrangement of convolutional blocks is
employed to build a hierarchical
representation of the input. Each block
consists of convolutional layers followed
by ReLU activations and pooling layers,
enabling the network to progressively
capture both low—level texture details and
high—level global structural patterns. This
multi—tiered approach facilitates effective
feature abstraction, ensuring that the
network learns discriminative
representations necessary for

differentiating among healthy controls,
MCI, and Alzheimer's disease. Additionally,

a hybrid loss function combining cross—
entropy with triplet loss is used to optimize
the feature space by clustering similar
diagnostic categories while maximizing
inter—class separation.

Finally, the high—level features are
consolidated through global average
pooling followed by one or more fully
connected layers. This strategy not only
reduces the parameter count and

overfitting risk but also efficiently
transforms the rich feature maps into a
final decision vector. An optional
lightweight attention module can be
integrated at this stage to dynamically
emphasize disease—relevant channels.
The output is then passed through a
SoftMax layer to yield probability
distributions across diagnostic classes.

This end—to—end architecture—

combining transfer learning, stacked CNNs,
and an optimized loss framework—
ensures robust and accurate classification

of Alzheimer's disease severity.

. EXPERIMENT RESULT &
DISCUSSION

3.1 Performance and evaluation
parameters

Each classifier produces predictions in
the form of a confusion matrix, which is
divided into true positives (TP), true
negatives (TN), false positives (FP), and
false negatives (FN), as mathematically
detailed in Table 2. TP and TN indicate the
number of correctly identified controls,
while FP and FN represent the instances
that were incorrectly classified.

Table 2. Multiclass confusion matrix

Prediction classification

classes AD LMCI | EMCI HC

AD TP F,, Fug Fuy

Actual ™o T T e | Ry, | R
classification

EMCI | Fg, Fg, TP Fgy

HC | Fys | Fu Fyg TP

Although accuracy is commonly used to
assess multi—class classifier performance
by computing the overall ratio of correct
predictions, it can be misleading in cases



of unstable or imbalanced class

distributions.
Accuracy = S L\ — (1)
TP+TN+FP+FN
Precision = — 2
TP+FP
Recall = —— 3)

TP+FN

To address this limitation, additional
metrics such as precision, recall, and F1—
score are incorporated. Precision
measures the proportion of correct
positive predictions, Recall (or Sensitivity)
reflects the ability to identify actual
positives, and the F1—score, which is the
harmonic mean of precision and recall,

provides a balanced evaluation of the

classifier's performance.

3.2 Classification results and
Discussion

Our results indicate that our stacked CNN
architecture achieves robust performance
in classifying T1—weighted MRI slices into
distinct diagnostic categories. Evaluation
metrics such as accuracy, sensitivity,
specificity, and Fl-—score consistently
demonstrate superior performance
compared to traditional CNN approaches
and standard transfer learning baselines.
Table3 shows the Classification results of
Unprocessed dataset and Table 4 shows
the results of the processed dataset.

Table 3. Classification results with unprocessed
T1—weighted images

Classifier’s | ACC% | PRE% | RECA%
MobileNetvl | 673 65.65 75.63
MobileNetv2 | 940 56.25 63.67
ShuffleNetV1 84.0 77.62 89.87
ShuffleNetv2 | 09-0 72.3 78.2
GhostNet 70.0 65.2 74.9
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EfficientNet 71.0 66.9 76.37
Proposed 87.9 85.8 92.6
Method

Table 4. Classification results with processed T1—
weighted images

Classifier’s ACC% PRE% RECA%

MobileNetvl | /0.6 63.12 77.2

MobileNetv2 | /1.8 66.25 76.91

ShuffleNetV1 69.4 75.5 73.8

ShuffleNetv2 | /0.9 63.2 79.5
GhostNet 72.0 61.56 77.25

EfficientNet 76.3 69.32 82.82
Proposed 97.75 90.5 98.7
Method

NOTE: ACC: Accuracy; PRE
RECA: Recall

Precision;

The observed improvement in Precision
and Recall can be attributed to the hybrid
loss function combining cross—entropy
and triplet loss. This combination enables
the model to cluster intra—class features
more  effectively  while  maximizing
separation between classes. Additionally,
the stacked CNN architecture captures
both low—level details and high—level
structural  features, contributing to
superior classification performance.
Visual assessments of activation maps
confirm that the network effectively
focuses on critical brain regions, including
the hippocampus, supporting its ability to
capture both fine—grained local details and
broader structural patterns. The
combination of pre—trained weights with a
hybrid loss function has facilitated
improved feature clustering, ensuring that
intra—class variations are minimized while
inter—class differences are emphasized.
Despite these promising outcomes, our
approach also presents several limitations
Investigation.

that warrant further

Converting 3D MRI volumes into 2D slices,
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although computationally efficient, may
lead to a loss of three—dimensional spatial
context that could be crucial for capturing
complex brain anatomy. Additionally,
while our findings on the ADNI dataset are
encouraging, validating the model on
external datasets is essential to ensure its
generalizability across different clinical
settings. Future research should explore
the integration of 3D contextual

information and further refine attention
mechanisms to enhance the model's

diagnostic accuracy and clinical utility.
Although we focused on lightweight CNNs,
transformer—based and attention—
augmented models such as those in [9]
and [10] have shown promise. We plan to
include these in future evaluations for

comprehensive benchmarking.

3.3 Ablation Study

To wvalidate the contribution of each
component in the proposed model, we
conducted an ablation study comparing
different variants as shown in Table 5.

Table 5. Ablation study results

Model ACC% | PRE% RECA%
Variant
Base CNN 88.1 82.5 85.3
(no stacking)
CNN + 91.3 86.2 89.5
Hybrid Loss
Stacked CNN 94.5 88.7 93.1
only
Full proposed
(stacked + | 9775 90.5 98.7
hybrid)

These results confirm that both the
stacked CNN structure and the hybrid loss

significantly improve performance.

IV. CONCLUSION

Our study demonstrates that leveraging a
stacked convolutional neural network

(CNN) architecture on preprocessed T1—
welghted MRI slices from the ADNI
database significantly enhances the

classification accuracy of Alzheimer's

disease severity. By converting 3D MRI
volumes into carefully selected 2D slices
and employing transfer learning for fine—
tuning, our model captures both local and
global structural features that are critical
for differentiating between healthy
controls, mild cognitive impairment, and

Alzheimer's disease. The integration of a
hybrid loss function further strengthens
the model's ability to cluster similar
features and separate dissimilar ones,
resulting in robust performance even with
limited training data.

While our approach shows promise in
advancing the early diagnosis of

Alzheimer's disease, challenges remain in

preserving the full 3D contextual
information inherent in volumetric data.
Future work should focus on incorporating
3D contextual cues and refining attention
mechanisms to further improve diagnostic
precision and generalizability across
diverse clinical datasets. Overall, our
findings underscore the potential of
stacked CNN architectures as a scalable,
efficient, and effective solution for
neuroimaging —based disease

classification.
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