
 

 INTRODUCTION 

 

Alzheimer’s disease (AD) remains one of 

the most challenging neurodegenerative 

disorders, with its insidious onset and 

progressive decline in cognitive and 

functional abilities.[1], [2] Early and 

accurate detection is critical for timely 

intervention and can potentially slow 

disease progression, thereby improving 

patients’ quality of life and reducing the 

long-term economic and social burdens 

associated with dementia. In recent years, 

advanced neuroimaging techniques, 

particularly structural magnetic resonance 

imaging (sMRI)—have become 

indispensable tools for investigating the 

pathological changes associated with AD. 

T1-weighted[3] MRI, known for its high 

spatial resolution and detailed anatomical 

contrast, provides crucial information on 

brain atrophy and other structural 

alterations that occur during the disease 

progression. 

The Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) has been instrumental in 

collecting large-scale, high-quality T1-

weighted MRI datasets that facilitate 

research into the early diagnosis of AD 

[4]. However, the inherent three-

dimensional nature of these images poses 

computational challenges, especially when 

deep learning models are applied directly 

to volumetric data. To mitigate these 

challenges, many studies have adopted a 
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Abstract 

This paper proposes a stacked convolutional neural network (CNN) architecture for classifying 

Alzheimer’s disease (AD) severity using T1-weighted MRI scans from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). 3D MRI volumes are preprocessed through intensity correction, 

spatial normalization to a standard template, and skull stripping, then sliced into informative 2D 

images based on anatomical landmarks and entropy measures. Data augmentation techniques 

further enhance the dataset while reducing overfitting. The stacked CNN, fine-tuned via transfer 

learning, extracts both local details and global structural features crucial for distinguishing healthy 

controls, mild cognitive impairment, and AD. A hybrid loss function combining cross-entropy and 

triplet loss improves the model’s discriminative power by clustering similar features and 

maximizing inter-class separation. Experimental results indicate high classification accuracy and 

robust performance, highlighting the potential of our approach for early AD diagnosis and severity 

assessment. 
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preprocessing pipeline that involves 

transforming the 3D MRI volumes into 2D 

slices. This approach not only reduces 

computational complexity but also allows 

the use of well-established two-

dimensional convolutional neural network 

(CNN) architecture without a significant 

loss of diagnostic information [5].  

Our work builds on recent advances in 

CNN-based Alzheimer’s disease 

classification by integrating a stacked CNN 

architecture. Stacked methods allow for 

the sequential learning of features across 

multiple layers, capturing both low-level 

local patterns such as subtle changes in 

gray matter intensity and high-level 

global structural information such as 

overall brain atrophy. Such a hierarchical 

approach has been shown to outperform 

conventional CNN models that rely solely 

on a monolithic structure, as stacking 

facilitates a more nuanced understanding 

of complex brain patterns associated with 

different stages of AD [4], [6]. 

In our proposed methodology, T1-

weighted MRI images from the ADNI 

database are first preprocessed to 

standardize the imaging data and correct 

for any intensity non-uniformities. The 

3D MRI volumes are then spatially 

normalized to a standard brain template, 

and non-brain tissues are removed via 

skull-stripping techniques. Next,[7], 

[8]the preprocessed 3D volumes are 

sliced into 2D images. This step is crucial 

because it enables us to leverage efficient 

2D CNN architecture while still capturing 

the critical anatomical information 

contained within the 3D data. By carefully 

selecting the most informative slices—

often guided by entropy or anatomical 

landmarks, the approach ensures that 

essential features for disease 

classification are retained [9]. 

The core of our analysis employs a 

stacked CNN architecture, which is 

designed to address two main challenges 

in AD diagnosis: the subtlety of early 

pathological changes and the need for 

efficient computation. The stacked CNN 

approach involves training multiple 

independent convolutional blocks 

sequentially, where each block is 

responsible for learning features at a 

progressively higher level of abstraction. 

Early blocks capture fine-grained, local 

Figure 1 Flow of the Architecture 
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details, while deeper blocks aggregate this 

information into more abstract 

representations that are indicative of 

global brain changes. This multi-level 

feature extraction mechanism enhances 

the network’s ability to discriminate 

between healthy controls, mild cognitive 

impairment (MCI), and full-fledged 

AD[5]. 

Moreover, by employing stacking 

techniques, our network mitigates the risk 

of overfitting—a common challenge when 

working with limited datasets—by 

distributing the learning process across 

multiple layers. Each stacked module 

refines the features extracted by its 

predecessor, leading to a robust 

representation that is both noise-tolerant 

and highly discriminative. Such 

architectures have demonstrated 

impressive performance in previous 

studies, where a combination of local and 

global contextual features was key to 

achieving high classification accuracy[4], 

[6]. 

Our study extends these approaches by 

specifically tailoring the preprocessing and 

feature extraction pipeline to T1-weight 

MRI data from ADNI. By slicing the 3D 

images into 2D planes and then feeding 

these into a stacked CNN framework, we 

capitalize on the rich information present 

in high-resolution MR images while 

maintaining computational efficiency. The 

subsequent layers of the CNN further 

process these features to enable accurate 

classification of Alzheimer’s disease 

severity. This strategy not only improves 

diagnostic performance but also offers a 

scalable solution suitable for clinical 

applications where rapid and reliable 

analysis is essential. 

 

 METHODOLOGY 

 

2.1 Experiment Design and Data 

Collection 

Our study follows a structured 

experimental design aimed at accurately 

classifying Alzheimer’s disease (AD) 

severity using T1-weighted structural 

MRI data. The primary objective is to 

develop a robust deep learning model that 

leverages stacked convolutional neural 

network (CNN) architectures to extract 

both local and global features from 

preprocessed 2D MRI slices. The 

experimental design was structured to 

ensure reproducibility and to optimize 

performance on data obtained from the 

Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). 

Data Source:  

T1-weighted MRI scans were obtained 

from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database 

(https://adni.loni.usc.edu). ADNI is a 

widely recognized repository that collects 

imaging, genetic, clinical, and biomarker 

data, serving as an essential resource for 

AD research. 

Participant Selection: 

A subset of subjects was selected from the 

ADNI database to ensure a balanced 

representation across diagnostic 

categories, including healthy controls 

(HC), mild cognitive impairment (MCI), 

and full-blown Alzheimer’s disease (AD) 

as shown in Table 1. Inclusion criteria 
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required subjects to be over 60 years of 

age, to have a confirmed diagnosis based 

on standard clinical assessments, and to 

have high-quality, intensity-corrected 

T1-weighted images. 

 

Table 1. Subject taken from the ADNI 

Group No.of Subjects Age Range 

AD 60 72.65 ± 8.6 
LMCI 60 76.80 ± 6.9 
EMCI 60 74.83 ± 6.1 

HC 60 75.83 ± 5.7 

 

2.2 Preprocessing Procedures 

Given the inherent complexity of 

processing full 3D MRI volumes, we 

implemented a series of standardized 

preprocessing steps to optimize the 

dataset for 2D CNN analysis. 

Intensity Correction and Registration: 

Each 3D MRI volume was subjected to 

intensity inhomogeneity corrections using 

methods such as N3 bias field correction. 

Subsequently, the volumes were spatially 

normalized by registering them to a 

standard brain template using 

neuroimaging software packages such as 

FSL and SPM. Skull stripping was then 

performed to remove non-brain tissues. 

3D-to-2D Slicing:To reduce 

computational complexity, each 3D volume 

was sliced into a series of 2D images. The 

most informative slices were selected 

based on anatomical landmarks the 

hippocampus and entropy measurements, 

ensuring that both local details and global 

structural changes were preserved. 

Image Standardization and Augmentation: 

The resulting 2D slices were resized to a 

uniform resolution 128 × 128 pixels to 

ensure consistency across the dataset. To 

further increase the diversity of the 

training data and to mitigate overfitting, 

data augmentation techniques—including 

rotation, flipping, scaling, and shifting—

were applied. 

 

2.3 Feature Extraction 

Stacked CNN Design: This core 

methodology employs stacked CNN 

architecture. This involves a series of 

sequential convolutional blocks, where 

each block extracts features at 

progressively higher levels of abstraction. 

Early convolutional layers capture fine, 

local details such as subtle tissue intensity 

variations, whereas deeper layers 

aggregate these details into high-level 

representations that reflect global brain 

atrophy. 

Transfer Learning and Fine-Tuning: To 

leverage existing knowledge and expedite 

model convergence, pre-trained CNN 

weights from models VGG, ResNet and 

MobileNet were used as initialization. 

These models were subsequently fine-

tuned on our ADNI-derived dataset, 

ensuring that the learned features were 

well adapted to the specific characteristics 

of T1-weighted MRI data. 

Loss Functions: To enhance the 

discriminative power of the network, we 

employed a composite loss function that 

combines cross-entropy loss with 

additional regularization triplet loss. This 

dual-loss approach helps cluster features 

from the same diagnostic category 

together while maximizing the separation 

between different categories. 

 

2.4 Architecture of the Experiment. 
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Our architecture begins by ingesting 

standardized 2D slices extracted from 3D 

T1-weighted MRI volumes. These slices 

serve as input to a series of initial 

convolutional layers designed to capture 

fine-grained local features. The network 

leverages transfer learning by initializing 

with pre-trained weights from models, 

which are then fine-tuned on our specific 

ADNI dataset. This initialization ensures 

that the model benefits from rich, generic 

feature representations that are later 

adapted to the nuances of structural MRI 

data, thus reducing the need for extensive 

training from scratch. 

 

At the core of the design, a stacked 

arrangement of convolutional blocks is 

employed to build a hierarchical 

representation of the input. Each block 

consists of convolutional layers followed 

by ReLU activations and pooling layers, 

enabling the network to progressively 

capture both low-level texture details and 

high-level global structural patterns. This 

multi-tiered approach facilitates effective 

feature abstraction, ensuring that the 

network learns discriminative 

representations necessary for 

differentiating among healthy controls, 

MCI, and Alzheimer’s disease. Additionally, 

a hybrid loss function combining cross-

entropy with triplet loss is used to optimize 

the feature space by clustering similar 

diagnostic categories while maximizing 

inter-class separation. 

Finally, the high-level features are 

consolidated through global average 

pooling followed by one or more fully 

connected layers. This strategy not only 

reduces the parameter count and 

overfitting risk but also efficiently 

transforms the rich feature maps into a 

final decision vector. An optional 

lightweight attention module can be 

integrated at this stage to dynamically 

emphasize disease-relevant channels. 

The output is then passed through a 

SoftMax layer to yield probability 

distributions across diagnostic classes. 

This end-to-end architecture—

combining transfer learning, stacked CNNs, 

and an optimized loss framework—

ensures robust and accurate classification 

of Alzheimer’s disease severity. 

 EXPERIMENT RESULT & 

DISCUSSION 

 

3.1 Performance and evaluation 

parameters 

Each classifier produces predictions in 

the form of a confusion matrix, which is 

divided into true positives (TP), true 

negatives (TN), false positives (FP), and 

false negatives (FN), as mathematically 

detailed in Table 2. TP and TN indicate the 

number of correctly identified controls, 

while FP and FN represent the instances 

that were incorrectly classified. 

Table 2. Multiclass confusion matrix   

Prediction classification 

Actual 
classification 

classes AD LMCI EMCI HC 

AD TP 𝐹஺௅ 𝐹஺ா 𝐹஺ு 

LMCI 𝐹௅஺ TP 𝐹௅ா 𝐹௅ு 

EMCI 𝐹ா஺ 𝐹ா௅ TP 𝐹ாு 

HC 𝐹ு஺ 𝐹ு௅ 𝐹ுா TP 

 

Although accuracy is commonly used to 

assess multi-class classifier performance 

by computing the overall ratio of correct 

predictions, it can be misleading in cases 
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of unstable or imbalanced class 

distributions.  

 

Accuracy = ்௉ା்ே

்௉ା்ேାி௉ାிே
      (1) 

Precision = ்௉

்௉ାி௉
            (2) 

Recall = ்௉

்௉ାிே
              (3) 

To address this limitation, additional 

metrics such as precision, recall, and F1-

score are incorporated. Precision 

measures the proportion of correct 

positive predictions, Recall (or Sensitivity) 

reflects the ability to identify actual 

positives, and the F1-score, which is the 

harmonic mean of precision and recall, 

provides a balanced evaluation of the 

classifier’s performance. 

 

3.2 Classification results and 

Discussion 

Our results indicate that our stacked CNN 

architecture achieves robust performance 

in classifying T1-weighted MRI slices into 

distinct diagnostic categories. Evaluation 

metrics such as accuracy, sensitivity, 

specificity, and F1-score consistently 

demonstrate superior performance 

compared to traditional CNN approaches 

and standard transfer learning baselines. 

Table3 shows the Classification results of 

Unprocessed dataset and Table 4 shows 

the results of the processed dataset. 

Table 3. Classification results with unprocessed 

T1-weighted images 

Classifier’s ACC% PRE% RECA% 

MobileNetV1 67.5 65.65 75.63 

MobileNetV2 54.0 56.25 63.67 

ShuffleNetV1 84.0 77.62 89.87 

ShuffleNetV2 69.0 72.3 78.2 

GhostNet 70.0 65.2 74.9 

EfficientNet 71.0 66.9 76.37 

Proposed 
Method 

87.9 85.8 92.6 

Table 4. Classification results with processed T1-

weighted images 

Classifier’s ACC% PRE% RECA% 

MobileNetV1 70.6 63.12 77.2 

MobileNetV2 71.8 66.25 76.91 

ShuffleNetV1 69.4 75.5 73.8 

ShuffleNetV2 70.9 63.2 79.5 

GhostNet 72.0 61.56 77.25 

EfficientNet 76.3 69.32 82.82 

Proposed 
Method 

97.75 90.5 98.7 

NOTE: ACC: Accuracy; PRE : Precision;        

RECA: Recall 

The observed improvement in Precision 

and Recall can be attributed to the hybrid 

loss function combining cross-entropy 

and triplet loss. This combination enables 

the model to cluster intra-class features 

more effectively while maximizing 

separation between classes. Additionally, 

the stacked CNN architecture captures 

both low-level details and high-level 

structural features, contributing to 

superior classification performance. 

Visual assessments of activation maps 

confirm that the network effectively 

focuses on critical brain regions, including 

the hippocampus, supporting its ability to 

capture both fine-grained local details and 

broader structural patterns. The 

combination of pre-trained weights with a 

hybrid loss function has facilitated 

improved feature clustering, ensuring that 

intra-class variations are minimized while 

inter-class differences are emphasized. 

Despite these promising outcomes, our 

approach also presents several limitations 

that warrant further investigation. 

Converting 3D MRI volumes into 2D slices, 
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although computationally efficient, may 

lead to a loss of three-dimensional spatial 

context that could be crucial for capturing 

complex brain anatomy. Additionally, 

while our findings on the ADNI dataset are 

encouraging, validating the model on 

external datasets is essential to ensure its 

generalizability across different clinical 

settings. Future research should explore 

the integration of 3D contextual 

information and further refine attention 

mechanisms to enhance the model’s 

diagnostic accuracy and clinical utility. 

Although we focused on lightweight CNNs, 

transformer-based and attention-

augmented models such as those in [9] 

and [10]  have shown promise. We plan to 

include these in future evaluations for 

comprehensive benchmarking. 

 

3.3 Ablation Study 

To validate the contribution of each 

component in the proposed model, we 

conducted an ablation study comparing 

different variants as shown in Table 5. 

Table 5. Ablation study results 

Model 
Variant 

ACC% PRE% RECA% 

Base CNN 
(no stacking) 

88.1 82.5 85.3 

CNN + 
Hybrid Loss 

91.3 86.2 89.5 

Stacked CNN 
only 

94.5 88.7 93.1 

Full proposed 
(stacked + 

hybrid) 

97.75 90.5 98.7 

These results confirm that both the 

stacked CNN structure and the hybrid loss 

significantly improve performance. 

 

 CONCLUSION 

Our study demonstrates that leveraging a 

stacked convolutional neural network 

(CNN) architecture on preprocessed T1-

weighted MRI slices from the ADNI 

database significantly enhances the 

classification accuracy of Alzheimer’s 

disease severity. By converting 3D MRI 

volumes into carefully selected 2D slices 

and employing transfer learning for fine-

tuning, our model captures both local and 

global structural features that are critical 

for differentiating between healthy 

controls, mild cognitive impairment, and 

Alzheimer’s disease. The integration of a 

hybrid loss function further strengthens 

the model’s ability to cluster similar 

features and separate dissimilar ones, 

resulting in robust performance even with 

limited training data. 

While our approach shows promise in 

advancing the early diagnosis of 

Alzheimer’s disease, challenges remain in 

preserving the full 3D contextual 

information inherent in volumetric data. 

Future work should focus on incorporating 

3D contextual cues and refining attention 

mechanisms to further improve diagnostic 

precision and generalizability across 

diverse clinical datasets. Overall, our 

findings underscore the potential of 

stacked CNN architectures as a scalable, 

efficient, and effective solution for 

neuroimaging-based disease 

classification. 
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