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(A Diabetes Prediction and Explanation System using Three Types of XAl)
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Abstract

In black-box machine learning—based diabetes prediction systems, users are not provided with
reasons or explanations for the results, leading to low understanding and trust. To address this
limitation, this study designs and implements a diabetes prediction and explanation system using
three types of Explainable Artificial Intelligence (XAI) techniques. The Pima Indian Diabetes
Dataset (PIDD) was used, and missing values were handled through median imputation. Nine
classification models were trained and evaluated using accuracy, precision, recall, Fl1-score, and
ROC-AUC metrics. The best-performing model was integrated with LIME, SHAP, and DiCE to
visualize different types of explanations through a web-based dashboard. LIME and SHAP provide
quantitative and visual representations of prediction rationale, enhancing user comprehension, while
DiCE offers counterfactual explanations that present alternative scenarios for easier interpretation.
By combining three XAI methods into one prediction model, the proposed system improves
explainability and reliability in diabetes diagnosis. Furthermore, this study serves as a foundational
reference for applying XAI techniques to other medical diagnostic systems.
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