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Efficient Net— BO baseline for three class Alzheimer
MRI with imbalance remedies

Subash Luitel, Goo—Rak Kwon

Class imbalance in structural MRI can bias Alzheimer disease classifiers toward majority categories
and raise the risk of clinically costly false negatives. We compare two simple and widely used
remedies within the same EfficientNet—BO transfer learning pipeline for three class slice level
classification of AD, CN, and MCI. Method A uses balanced sampling each epoch with standard cross
entropy. Method B uses natural sampling with class weighted cross entropy. With identical
preprocessing, augmentations, label smoothing 0.05, the AdamW optimizer, and a two—phase schedule
with 8 epochs of warm up followed by 10 epochs of fine tuning, we evaluate on a stratified 15%
validation split that reflects natural prevalence with AD 18,440 slices, CN 26,892, and MCI 42,744.
Method B attains accuracy 0.9938, macro F1 0.9938, and AD recall 0.9946, exceeding Method A with
0.9839, 0.9829, and 0.9646. AD false negatives decreased from 98% of method A to 15% of method
B. The gain arises from exposure to all unique training samples each epoch and from an objective that
matches the unbalanced validation distribution by reweighting errors without altering batch priors.
These results support class weighted loss as a strong and architecture agnostic baseline for
imbalanced AD MRI and agree with prior evidence that weighting can outperform synthetic
oversampling on related Alzheimer datasets.

Keywords: Alzheimer’ s disease | Balanced sampling | Class imbalance | class weighted cross entropy |
EfficientNet— BO | MRI | Transfer learning

1. INTRODUCTION cognitive impairment (MCI) typically
outnumber  Alzheimer disease. This
imbalance biases optimization toward
majority classes and increases the risk of
clinically costly Alzheimer false
negatives[5]. Prior studies in AD MRI
have addressed the skew with data level
resampling and with loss reweighting.
Random oversampling and synthetic
methods such as Synthetic Minority

Alzheimer disease (AD) is a progressive
neurodegenerative disorder with major
societal and clinical burden. Early and
reliable detection remains challenging
because structural changes can be subtle
iIn prodromal stages, and clinical
deployment also demands transparent
models that clinicians can trust[1]. Recent

work highlights both the promise of : )
machine learning for Alzheimer disease Oversampling Technique (SMOTE) and

and the necessity of explainibility for Adaptiye Synthetic Sar.npling (ADASYN)
clinical acceptance[2]. In parallel, MRI are widely used to build class balanced

based deep learning pipelines commonly training batches and often improve

rely on transfer learning to overcome data minority  class  sensitivity in AD
scarcity and  computational  limits datasets[6], [7]. Broader surveys in

achieving strong multi class performance medical imaging and 1mbalar_1c.ed learning
on dementia staging tasks[3]. [4]. A recommend class balanced mini batches as

persistent obstacle is class imbalance a simple baseline and a fair comparator to
where cognitively normal (CN) and mild loss weighting. At the same time, several
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comparisons report that weight balancing
can be competitive or superior across
accuracy, precision, recall, and macro F1
when evaluation remains unbalanced,
which motivates a controlled head to head
test under a fixed recipe[8]. Our focus is
a controlled comparison of two simple and
widely used imbalance remedies within the
same EfficientNet—BO transfer learning
pipeline for three <class MRI slice
classification that covers Alzheimer
disease, cognitively normal, and mild
cognitive 1mpairment. Method A uses
balanced sampling each epoch with
standard cross entropy, following the
common practice of constructing class
balanced batches in AD MRI. Method B
uses natural sampling with class weighted
cross entropy. We keep the validation split
unbalanced to reflect natural prevalence,
we quantify effects on Alzheimer recall as
a clinical priority, and we analyze why loss
weighting can outperform sampler based
balancing by aligning the training objective
with the evaluation distribution while
exposing all unique samples each epoch.
Under a carefully matched EfficientNet—
BO fine tuning recipe, class weighted cross
entropy enhances Alzheimer sensitivity

and improves macro F1 compared with
balanced sampling, particularly when the
validation set preserves real world class
ratios. We conclude with practical
guidance on when to prefer loss weighting
over per epoch balanced sampling in
Alzheimer MRI classification, noting the
tradeoffs between stability, sensitivity,
and generalizability to real world class
distributions. We select EfficientNet—BO
with ImageNet pretraining because it
offers a strong balance between accuracy
and computational efficiency, and we keep
the model, the data processing, and the
training schedule identical so that the
comparison of imbalance remedies is clear
and fair.

2. METHODOLOGY

In this study we use EfficientNet— BO
as the backbone for Alzheimer detection.
Figure 1 provides an overall methodology
of our study, and the subsections present
detailed description of each component,
describing each stage in detail. We keep
the model, data processing, and training
schedule consistent so that the
comparison of imbalance remedies is clear
and fair. We select EfficientNet—BO, pre
trained on ImageNet, because it offers a
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Figure 1. Overall methodology of our study



strong balance between accuracy and
computational efficiency.

2. 1. Data & Preprocessing
We use T1-—weighted MRIs from the

Alzheimer's Disease Neuroimaging
Initiative cohort[9]—[11]. All volumes are
preprocessed offline with Statistical
Parametric  Mapping  (SPM25) and
computational anatomy toolbox
(CAT12.9). The SPM25 is available at
https://github.com/spm/spm/releases and
CAT12.9 at
https://github.com/ChristianGaser/cat12/r
eleases. The pipeline includes bias field
correction, tissue segmentation, spatial
normalization to MNI space, and skull
stripping. The same upstream steps are
applied to every experiment. After
preprocessing, we generate a metadata
table in CSV format with subject identifiers
and diagnostic labels for downstream
slicing. The dataset includes 18,440 slices

labeled Alzheimer's disease, 26,892
labeled cognitively normal, and 42,744
labeled mild cognitive impairment.

2.2. Slice preparation and split

From every preprocessed volume we
extract axial slices that pass through the
hippocampal region and save each slice as
a (224 x 224) PNG. The slices are single—
channel images; to meet the network input
we replicate the gray channel to form
three channels. Intensities are
standardized with the ImageNet mean and
standard deviation. The validation and test
pipelines do not resize or crop; they only
convert the image to a tensor and apply the
same normalization.

During training only, we apply light
geometric jitter to improve robustness to
small misregistration while preserving
anatomy. We use RandomAffine with

rotation *7° translation £2%, and scale
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0.97-1.03, and we include horizontal flip
with probability 0.5.

2.3. Training and transfer learning

We fine—tune EfficientNet—BO
initialized from ImageNet with a three
class linear head for AD, CN, and MCI.
Training uses cross entropy with label
smoothing set to 0.05, the Adam with
decoupled weight decay (AdamW)
optimizer with weight decay 1 x 107*, and
automatic mixed precision. First is a warm
up of 8 epochs with the backbone frozen
so only the classifier head is trained.
Second i1s 10 epochs of end—to—end fine
tuning with a reduced learning rate. We
use Reduce on Plateau on the validation
loss with factor 0.5 and patience 2 and
early stopping with patience 6. The
checkpoint with the minimum validation
loss is restored for reporting.

2.4. Imbalance strategies
compared

2.4.7. Method A (balanced
sampler + cross entropy)

In this method, each training epoch
draws class homogeneous batches so that
mini—batches contain equal counts from
AD, CN, and MCI. The loss remains
standard cross entropy. Here, this data
level rebalance reduces gradient bias
toward majority classes and can Improve
minority class sensitivity, as reported in
AD MRI studies using oversampling and
balanced batches. The tradeoff is that
minority images repeat more often, which
can add duplication noise if augmentation
1s light or if evaluation remains unbalanced.

2.4.2. Method B (class

weighted cross entropy)

In this method, natural sampling is
preserved and the loss assigns a larger
penalty to errors on underrepresented
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classes. The weight for each class is
proportional to the inverse of its frequency
in the training split and the weights are
normalized to sum to one. This keeps
batch priors unchanged while aligning the
optimization objective with the unbalanced
evaluation distribution. It reduces the need
to duplicate minority images and can
improve Alzheimer sensitivity when
validation reflects real—world prevalence.
The class—weighted cross—entropy for a
single sample is,

Lyce(x,y) = — Xceqancnmeny We Ye logpe (1)

where, w, is the Normalized class
weight for class ¢ and given by,

T (1/map)+(1/nen)+(1/nuer)

Here, x is a slice, y is one hot target,
p. is the predicted probability for class c,
and n, is the number of training samples
in class ¢, Weights are computed once on
the training split and reused for all epochs.
The optimizer, schedule, and
augmentations are the same as in Method
A. Moreover, the data pipeline and the
composition of  mini—batches are
unchanged and training uses natural
sampling. The wvalidation set remains
unbalanced.

2.5. Classification and evaluation

Inference uses a single forward pass
for each slice and the label is assigned by
argmax over the class probabilities. We do
not use test time augmentation and we do
not apply decision thresholds. Metrics are
computed on the unbalanced wvalidation
split and include accuracy, macro F1, and
per class precision recall and FI.
Confusion matrices are reported for error
analysis.

3. Experiment result and
discussion

We evaluate two imbalance remedies
within the same EfficientNet—BO pipeline.
Method A uses a balanced sampler with
cross entropy while Method B uses class
weighted cross entropy with natural
sampling. All metrics are reported on the
unbalanced 15% validation split using
argmax predictions and no test time
augmentation.

3.1. Training dynamics

Figures 2 and 3 present loss and
accuracy, respectively, across the 10
epoch fine—tuning phase for both
imbalance strategies. The vertical dashed
line marks the epoch with the minimum
validation loss and those weights are
restored for all reported metrics. Method
B descends faster and reaches a lower
validation loss than Method A, and
maintains a slightly higher wvalidation
accuracy in late epochs. Because Reduce
on Plateau lowers the learning rate when
validation loss stalls and early stopping
halts when improvements cease, pilot runs
with more epochs did not yield a better

validation checkpoint.
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Figure 2. Loss for Methods A and B



Accuracy — Methods A vs B
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Figure 3. Accuracy for Methods A and B

3.2. Error Patterns

Figures 4 and 5 show confusion
matrices on the unbalanced validation set.
It can be seen that under Method A, most
Alzheimer errors are Alzheimer to MCI
confusions, yielding 98 Alzheimer false
negatives. Under Method B, Alzheimer
false negatives are reduced to 15 while
performance for cognitively normal and
mild cognitive impairment remains high.
The diagonal entries for Alzheimer
strengthen visibly under Method B,
indicating a more favorable operating point
for clinical sensitivity.

Confusion Matrix — Method A
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Figure 4. Confusion matrix for Method A
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Confusion Matrix — Method B
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Figure 5. Confusion matrix for Method B

3.3. Comparison

Table 1 presents the comparison of the
two 1mbalance strategies on the
unbalanced validation split with argmax
predictions and no test time augmentation.
Method B increases accuracy from 0.9839
to 0.9938 and macro F1 from 0.9829 to
0.9938. The clinically critical Alzheimer
recall rises from 0.9646 to 0.9946,
reducing Alzheimer false negatives from
98 to 15. These gains mirror the lower
validation loss for Method B and the
improved Alzheimer diagonal in the
confusion matrices. Because evaluation
preserves the natural prevalence,
reweighting by inverse class frequency
aligns optimization with the evaluation
distribution and directly improves minority
class  sensitivity  without  changing
architecture or inference.

Table 1. Comparison of the two imbalance
strategies (Method A vs Method B)

Metric Method A | Method B
Accuracy 0.9839 0.9938
Loss 0.2323 0.2197
Macro—F1 | 0.9829 0.9938
AD 0.9929 0.9953
Precision

AD Recall | 0.9646 0.9946
ADF1 0.9785 0.9949
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AD False | 98 15
Negatives

CN 0.9761 0.9884
Precision

CN Recall | 0.9921 0.9953
CNF1 0.9840 0.9918
CN False | 32 19
Negatives

MCI 0.9851 0.9966
Precision

MCI Recall | 0.9871 0.9925
MCIF1 0.9861 0.9945
MCI False | 83 48
Negatives

3.4. Experiment Environment

Experiments were run on Windows 11
with Python 3.12.3 through Anaconda. The
models used PyTorch 2.7.0 with CUDA
11.8 and torchvision 0.22.0, executed on
two NVIDIA TITAN RTX GPUs. Core
libraries included OpenCV 4.11.0, nibabel
5.3.2, pandas 2.2.2, and matplotlib 3.9.2.
Training and evaluation were carried out in
Jupyter Notebook. MRI preprocessing was
performed in MATLAB R2024b using
SPM25 and CAT12.9.

4. Conclusion

We present a strong transfer learning
baseline for 3—class AD, CN, and MCI
slice classification using EfficientNet— BO,
comparing two imbalance remedies under
an identical recipe with 8 epochs of warm
up and 10 epochs of fine tuning, light
geometric augmentation, label smoothing
0.05, AdamW, and automatic mixed
precision AMP. On a stratified 85/15 split
with an unbalanced validation set and
argmax inference without test time
augmentation, class weighted cross
entropy with natural sampling outperforms
balanced sampling with standard cross
entropy across headline metrics. Accuracy
is 0.9938 versus 0.9839 and macro F1 is
0.9938 versus 0.9829. The largest gain is
in AD recall, 0.9946 versus 0.9646,

reducing AD false negatives from 98 to 15.
Because it changes only the loss weighting
and adds no architectural or inference
overhead, the method is easy to adopt.

This study operates at the slice level
and uses a single dataset and a single
preprocessing pipeline based on SPM25
and CAT12.9. Next steps include patient
level evaluation and external validation,
aggregation of slices to subject level
predictions, robustness checks across
scanners and sites and preprocessing
variants, probability calibration with
analysis of operating points for clinical
sensitivity and specificity, and exploration
of richer encoders such as 2.5D and 3D or
transformer hybrids together with broader
imbalance baselines including effective
number, focal loss, LDAM, and logit
adjustment.
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