
1. INTRODUCTION 

 Alzheimer disease (AD) is a progressive 

neurodegenerative disorder with major 

societal and clinical burden. Early and 

reliable detection remains challenging 

because structural changes can be subtle 

in prodromal stages, and clinical 

deployment also demands transparent 

models that clinicians can trust[1]. Recent 

work highlights both the promise of 

machine learning for Alzheimer disease 

and the necessity of explainibility for 

clinical acceptance[2]. In parallel, MRI 

based deep learning pipelines commonly 

rely on transfer learning to overcome data 

scarcity and computational limits, 

achieving strong multi class performance 

on dementia staging tasks[3], [4]. A 

persistent obstacle is class imbalance, 

where cognitively normal (CN) and mild 

cognitive impairment (MCI) typically 

outnumber Alzheimer disease. This 

imbalance biases optimization toward 

majority classes and increases the risk of 

clinically costly Alzheimer false 

negatives[5]. Prior studies in AD MRI 

have addressed the skew with data level 

resampling and with loss reweighting. 

Random oversampling and synthetic 

methods such as Synthetic Minority 

Oversampling Technique (SMOTE) and 

Adaptive Synthetic Sampling (ADASYN) 

are widely used to build class balanced 

training batches and often improve 

minority class sensitivity in AD 

datasets[6], [7]. Broader surveys in 

medical imaging and imbalanced learning 

recommend class balanced mini batches as 

a simple baseline and a fair comparator to 

loss weighting. At the same time, several 
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Method B attains accuracy 0.9938, macro F1 0.9938, and AD recall 0.9946, exceeding Method A with 

0.9839, 0.9829, and 0.9646. AD false negatives decreased from 98% of method A to 15% of method 

B. The gain arises from exposure to all unique training samples each epoch and from an objective that 

matches the unbalanced validation distribution by reweighting errors without altering batch priors. 

These results support class weighted loss as a strong and architecture agnostic baseline for 
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comparisons report that weight balancing 

can be competitive or superior across 

accuracy, precision, recall, and macro F1 

when evaluation remains unbalanced, 

which motivates a controlled head to head 

test under a fixed recipe[8]. Our focus is 

a controlled comparison of two simple and 

widely used imbalance remedies within the 

same EfficientNet-B0 transfer learning 

pipeline for three class MRI slice 

classification that covers Alzheimer 

disease, cognitively normal, and mild 

cognitive impairment. Method A uses 

balanced sampling each epoch with 

standard cross entropy, following the 

common practice of constructing class 

balanced batches in AD MRI. Method B 

uses natural sampling with class weighted 

cross entropy. We keep the validation split 

unbalanced to reflect natural prevalence, 

we quantify effects on Alzheimer recall as 

a clinical priority, and we analyze why loss 

weighting can outperform sampler based 

balancing by aligning the training objective 

with the evaluation distribution while 

exposing all unique samples each epoch. 

Under a carefully matched EfficientNet-

B0 fine tuning recipe, class weighted cross 

entropy enhances Alzheimer sensitivity 

and improves macro F1 compared with 

balanced sampling, particularly when the 

validation set preserves real world class 

ratios. We conclude with practical 

guidance on when to prefer loss weighting 

over per epoch balanced sampling in 

Alzheimer MRI classification, noting the 

tradeoffs between stability, sensitivity, 

and generalizability to real world class 

distributions. We select EfficientNet-B0 

with ImageNet pretraining because it 

offers a strong balance between accuracy 

and computational efficiency, and we keep 

the model, the data processing, and the 

training schedule identical so that the 

comparison of imbalance remedies is clear 

and fair.  

2. METHODOLOGY 

   In this study we use EfficientNet- B0 

as the backbone for Alzheimer detection. 

Figure 1 provides an overall methodology  

of our study, and the subsections present 

detailed description of each component, 

describing each stage in detail. We keep 

the model, data processing, and training 

schedule consistent so that the 

comparison of imbalance remedies is clear 

and fair. We select EfficientNet-B0, pre 

trained on ImageNet, because it offers a 

Figure 1. Overall methodology of our study 
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strong balance between accuracy and 

computational efficiency.  

2.1. Data & Preprocessing 
 We use T1-weighted MRIs from the 

Alzheimer’s Disease Neuroimaging 

Initiative cohort[9]-[11]. All volumes are 

preprocessed offline with Statistical 

Parametric Mapping (SPM25) and 

computational anatomy toolbox 

(CAT12.9). The SPM25 is available at 

https://github.com/spm/spm/releases and  

CAT12.9 at 

https://github.com/ChristianGaser/cat12/r

eleases. The pipeline includes bias field 

correction, tissue segmentation, spatial 

normalization to MNI space, and skull 

stripping. The same upstream steps are 

applied to every experiment. After 

preprocessing, we generate a metadata 

table in CSV format with subject identifiers 

and diagnostic labels for downstream 

slicing. The dataset includes 18,440 slices 

labeled Alzheimer’s disease, 26,892 

labeled cognitively normal, and 42,744 

labeled mild cognitive impairment.  

 

2.2. Slice preparation and split 

 From every preprocessed volume we 

extract axial slices that pass through the 

hippocampal region and save each slice as 

a (224 × 224) PNG. The slices are single-

channel images; to meet the network input 

we replicate the gray channel to form 

three channels. Intensities are 

standardized with the ImageNet mean and 

standard deviation. The validation and test 

pipelines do not resize or crop; they only 

convert the image to a tensor and apply the 

same normalization. 

During training only, we apply light 

geometric jitter to improve robustness to 

small misregistration while preserving 

anatomy. We use RandomAffine with 

rotation ±7°, translation ≤2%, and scale 

0.97–1.03, and we include horizontal flip 

with probability 0.5. 

 

2.3. Training and transfer learning 

 We fine-tune EfficientNet-B0 

initialized from ImageNet with a three 

class linear head for AD, CN, and MCI. 

Training uses cross entropy with label 

smoothing set to 0.05, the Adam with 

decoupled weight decay (AdamW) 

optimizer with weight decay 1 × 10ିସ, and 

automatic mixed precision. First is a warm 

up of 8 epochs with the backbone frozen 

so only the classifier head is trained. 

Second is 10 epochs of end-to-end fine 

tuning with a reduced learning rate. We 

use Reduce on Plateau on the validation 

loss with factor 0.5 and patience 2 and 

early stopping with patience 6. The 

checkpoint with the minimum validation 

loss is restored for reporting. 

 

2.4. Imbalance strategies 
compared 

2.4.1. Method A (balanced 

sampler + cross entropy)  

 In this method, each training epoch 

draws class homogeneous batches so that 

mini-batches contain equal counts from 

AD, CN, and MCI. The loss remains 

standard cross entropy. Here, this data 

level rebalance reduces gradient bias 

toward majority classes and can improve 

minority class sensitivity, as reported in 

AD MRI studies using oversampling and 

balanced batches. The tradeoff is that 

minority images repeat more often, which 

can add duplication noise if augmentation 

is light or if evaluation remains unbalanced. 

2.4.2. Method B (class 

weighted cross entropy) 
 In this method, natural sampling is 

preserved and the loss assigns a larger 

penalty to errors on underrepresented 
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classes. The weight for each class is 

proportional to the inverse of its frequency 

in the training split and the weights are 

normalized to sum to one. This keeps 

batch priors unchanged while aligning the 

optimization objective with the unbalanced 

evaluation distribution. It reduces the need 

to duplicate minority images and can 

improve Alzheimer sensitivity when 

validation reflects real-world prevalence. 

The class-weighted cross-entropy for a 

single sample is, 

 

𝐿WCE(𝑥, 𝑦) = − ∑ 𝑤௖෦௖∈{AD,CN,MCI}  𝑦௖   log 𝑝௖ (1) 

 

where, 𝑤௖  is the Normalized class 

weight for class c and given by, 

 

𝑤௖෦  =  
ଵ/௡೎

(ଵ/௡AD)ା(ଵ/௡CN)ା(ଵ/௡MCI)
           (2) 

 

 Here, 𝑥 is a slice, 𝑦 is one hot target, 

𝑝௖ is the predicted probability for class 𝑐, 

and 𝑛௖ is the number of training samples 

in class 𝑐, Weights are computed once on 

the training split and reused for all epochs. 

The optimizer, schedule, and 

augmentations are the same as in Method 

A. Moreover, the data pipeline and the 

composition of mini-batches are 

unchanged and training uses natural 

sampling. The validation set remains 

unbalanced. 

2.5. Classification and evaluation 

 Inference uses a single forward pass 

for each slice and the label is assigned by 
argmax over the class probabilities. We do 

not use test time augmentation and we do 

not apply decision thresholds. Metrics are 

computed on the unbalanced validation 

split and include accuracy, macro F1, and 

per class precision recall and F1. 

Confusion matrices are reported for error 

analysis. 

 

3. Experiment result and 

discussion 

 We evaluate two imbalance remedies 

within the same EfficientNet-B0 pipeline. 

Method A uses a balanced sampler with 

cross entropy while Method B uses class 

weighted cross entropy with natural 

sampling. All metrics are reported on the 

unbalanced 15% validation split using 

argmax predictions and no test time 

augmentation. 

 

3.1. Training dynamics 

Figures 2 and 3 present loss and 

accuracy, respectively, across the 10 

epoch fine-tuning phase for both 

imbalance strategies. The vertical dashed 

line marks the epoch with the minimum 

validation loss and those weights are 

restored for all reported metrics. Method 

B descends faster and reaches a lower 

validation loss than Method A, and 

maintains a slightly higher validation 

accuracy in late epochs. Because Reduce 

on Plateau lowers the learning rate when 

validation loss stalls and early stopping 

halts when improvements cease, pilot runs 

with more epochs did not yield a better 

validation checkpoint. 

 

Figure 2. Loss for Methods A and B 
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Figure 3. Accuracy for Methods A and B 

 

3.2. Error Patterns 

Figures 4 and 5 show confusion 

matrices on the unbalanced validation set. 

It can be seen that under Method A, most 

Alzheimer errors are Alzheimer to MCI 

confusions, yielding 98 Alzheimer false 

negatives. Under Method B, Alzheimer 

false negatives are reduced to 15 while 

performance for cognitively normal and 

mild cognitive impairment remains high. 

The diagonal entries for Alzheimer 

strengthen visibly under Method B, 

indicating a more favorable operating point 

for clinical sensitivity. 

 

 

Figure 4. Confusion matrix for Method A 

 

 

Figure 5. Confusion matrix for Method B 

 

3.3. Comparison  

Table 1 presents the comparison of the 

two imbalance strategies on the 

unbalanced validation split with argmax 

predictions and no test time augmentation. 

Method B increases accuracy from 0.9839 

to 0.9938 and macro F1 from 0.9829 to 

0.9938. The clinically critical Alzheimer 

recall rises from 0.9646 to 0.9946, 

reducing Alzheimer false negatives from 

98 to 15. These gains mirror the lower 

validation loss for Method B and the 

improved Alzheimer diagonal in the 

confusion matrices. Because evaluation 

preserves the natural prevalence, 

reweighting by inverse class frequency 

aligns optimization with the evaluation 

distribution and directly improves minority 

class sensitivity without changing 

architecture or inference. 

 

Table 1. Comparison of the two imbalance 

strategies (Method A vs Method B) 

Metric  Method A Method B 

Accuracy 0.9839 0.9938 

Loss 0.2323 0.2197 

Macro-F1 0.9829 0.9938 

AD 

Precision 

0.9929 0.9953 

AD Recall 0.9646 0.9946 

AD F1 0.9785 0.9949 
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AD False 

Negatives 

98 15 

CN 

Precision 

0.9761 0.9884 

CN Recall 0.9921 0.9953 

CN F1 0.9840 0.9918 

CN False 

Negatives 

32 19 

MCI 

Precision 

0.9851 0.9966 

MCI Recall 0.9871 0.9925 

MCI F1 0.9861 0.9945 

MCI False 

Negatives 

83 48 

 

3.4. Experiment Environment 
Experiments were run on Windows 11 

with Python 3.12.3 through Anaconda. The 

models used PyTorch 2.7.0 with CUDA 

11.8 and torchvision 0.22.0, executed on 

two NVIDIA TITAN RTX GPUs. Core 

libraries included OpenCV 4.11.0, nibabel 

5.3.2, pandas 2.2.2, and matplotlib 3.9.2. 

Training and evaluation were carried out in 

Jupyter Notebook. MRI preprocessing was 

performed in MATLAB R2024b using 

SPM25 and CAT12.9. 

4. Conclusion 

We present a strong transfer learning 

baseline for 3-class AD, CN, and MCI 

slice classification using EfficientNet- B0, 

comparing two imbalance remedies under 

an identical recipe with 8 epochs of warm 

up and 10 epochs of fine tuning, light 

geometric augmentation, label smoothing 

0.05, AdamW, and automatic mixed 

precision AMP. On a stratified 85/15 split 

with an unbalanced validation set and 

argmax inference without test time 

augmentation, class weighted cross 

entropy with natural sampling outperforms 

balanced sampling with standard cross 

entropy across headline metrics. Accuracy 

is 0.9938 versus 0.9839 and macro F1 is 

0.9938 versus 0.9829. The largest gain is 

in AD recall, 0.9946 versus 0.9646, 

reducing AD false negatives from 98 to 15. 

Because it changes only the loss weighting 

and adds no architectural or inference 

overhead, the method is easy to adopt. 

This study operates at the slice level 

and uses a single dataset and a single 

preprocessing pipeline based on SPM25 

and CAT12.9. Next steps include patient 

level evaluation and external validation, 

aggregation of slices to subject level 

predictions, robustness checks across 

scanners and sites and preprocessing 

variants, probability calibration with 

analysis of operating points for clinical 

sensitivity and specificity, and exploration 

of richer encoders such as 2.5D and 3D or 

transformer hybrids together with broader 

imbalance baselines including effective 

number, focal loss, LDAM, and logit 

adjustment. 
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