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Abstract

Large Language Models (LLMs) demonstrate significant potential in clinical decision support, but concerns
remain regarding their trustworthiness due to hallucinations, biases, and inconsistent outputs. Existing LLM
evaluation frameworks predominantly focus on technical performance metrics, failing to adequately address clinical
safety, explainability, and ethical appropriateness. To overcome these limitations, this study proposes a
trustworthiness evaluation framework for medical LLLMs that integrates a role-based multi-agent architecture with
a dual validation system. The proposed framework consists of a Rubric Agent, which evaluates diagnostic
responses, and a Validation Agent, which verifies the assessment, systematically addressing multidimensional
evaluation criteria including accuracy, consistency, explainability, and safety. The framework’s effectiveness was
validated through a pilot evaluation using the text-based medical question-answering dataset MedQA,
demonstrating that the proposed dual validation structure can improve reproducibility and consistency compared
to single-agent evaluation approaches. This research provides a foundational validation framework for the safe and
responsible deployment of LLMs in healthcare settings, and can be further developed through expanded evaluations
incorporating multimodal inputs and empirical studies involving clinical expert participation.
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Input :
M : LLM(GPT 4o-mini)

M := {accuracy, explainability, consistency, safety}

R : Rubric

Output: P := Per-metric primary eval

I: Medical Image; T : Diagnosis Text

G = Global scoring & rationale

V := Validation
D := JSON for Diagnosis;

schema = {summary, evidence_list, criteria, final_judgment} :

tx_in < {I,T}
2: r_raw < CALL_LLM(M, x_in)

D < PARSE_JSON(r_raw, schema)

STORE_DB(D); D <~ LOAD_DB()

Pe{)

: s« SCORE_BY_RUBRIC(D, R[m])

1 < MAKE _RATIONALE(D, m, 5)

P[m] < {score: CLAMP(s, 1, 5), rationale: r'}

1
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6: forM € m do
0
8:
9:
1

0: end for
11: G < SCORING_AGENT(P)
12: V <~ VALIDATION_AGENT(D, P, G)

13: return P, G,V D
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