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Abstract

More and more enterprises or organizations are starting to introduce Al and ML into their critical
business decision—-making processes. Despite the many advantages of deep learning models, drawbacks
of deep learning include data dependency, computational costs, bias, and difficulty in interpretation. In
this study, we propose a method to provide additional information on the shortcomings of deep learning,
such as data dependency, bias problems, and difficulty of interpretation. The proposed XAI methodology
proposes a precautionary analysis step that considers both the training data and ML model aspects, and
bidirectional explainability utilizing Perturbation-based and Gradient-based methods.
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