
 

I. INTRODUCTION 

Agriculture is crucial for global food security, 

but crop diseases can reduce yields by 

20–40% [1]. Early disease identification is 

vital, yet manual inspection is labor-intensive 

and slow [2]. Deep learning, particularly 

Convolutional Neural Networks (CNNs) and 

Vision Transformers (ViTs), offer potential 

for automating disease classification [3]. 

However, both methods require large datasets, 

and high-quality, domain-specific datasets 

are scarce [4]. Lab-based datasets are large 

but may lack real-world applicability, 

field-based datasets are more representative 

but often too small for robust training. Data 

augmentation techniques, such as color, 

transformation, and noise-based 

modifications, can help expand datasets and 

improve model generalization [5]. This study 

explores effective augmentation strategies for 

plant leaf disease classification using CNNs 

and ViTs, comparing the performance of lab 

and field datasets to guide future research and 

model development. This study provides 

contributions in the following ways: 

• Comprehensive exploration of combined 

augmentation methods (color, transformation, 
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and noise based) to enhance potato leaf 

disease detection accuracy across diverse 

datasets. 

• Evaluated lab-based (PLD) [14] and 

field-based (PLDDUE) [15] datasets, finding 

field datasets that benefited most from 

combined augmentations, improving 

generalization. 

• Analyzed augmentation performance across 

CNNs (MobileNetV3, DenseNet121, 

EfficientNetV2B0, ResNet50V2, and VGG19) 

and transformer-based models (ViT and 

Transformer), for both augmentation methods 

and both datasets. 

• Validated that augmentation strategies 

improve disease detection accuracy and 

model reliability, making datasets more 

suitable for real-world agricultural 

applications. 

The rest of the paper is organized as follows. 

Section II describes the related work. Section 

III describes the background of this work, 

including datasets and deep learning 

techniques. Section IV mentions the 

methodology used in this study. Section V 

elaborates the results of each experiment and 

the conclusive summary can be found in 

Section VI. 

 

II. RELATED WORK 

 Recent studies highlight the effectiveness of 

data augmentation in improving deep learning 

models for plant leaf disease detection. Eunice 

et al. [6] applied rotation, flipping, and 

zooming to the PlantVillage dataset, achieving 

up to 99.81% accuracy with DenseNet121. 

Fulle et al. [7] augmented a field dataset from 

Ethiopia using shearing and brightness shifting, 

reaching 99.93% accuracy with MobileNetV3 

Small. Paiva et al. [8] used rotation and 

brightness adjustments on the cassava dataset, 

achieving 74.77% accuracy with 

DenseNet169. Lanjewar et al. [9] applied flip 

and rotation augmentations on a potato leaf 

dataset, reaching 99.67% accuracy with 

DenseNet169. Ramya et al. [10] achieved 

99.7% accuracy on a subset of PlantVillage’s 

tomato images using flipping and rotation. 

Salam et al. [11] augmented a mulberry 

dataset and reached 94.4% accuracy with 

ResNet50, while Shah et al. [12] applied 

multiple augmentations to a grape dataset, 

achieving 98% accuracy with ResNet50V2. 

These studies demonstrate that data 

augmentation significantly boosts model 

performance. Building on this, this study 

explores the impact of various augmentation 

methods for potato leaf disease detection 

across lab and field datasets, providing 

insights for future research. 

 

III. BACKGROUND 

Deep learning (DL) techniques, particularly 

convolutional neural networks (CNNs) and 

vision transformers (ViTs), offer promising 

solutions for automating disease detection 

through image classification. However, these 

models require large, diverse and 

high-quality datasets, and data augmentation 

techniques like color adjustments and 

geometric transformations help address this 

challenge by expanding datasets and 

improving model performance. While 

augmentation has been effective in controlled 

environments, less is known about its 

performance in real-world field conditions.  

A. DATASETS 

1) Lab Dataset 

Lab datasets are datasets that were captured 

in perfect conditions in a lab like setting. This 

means that they are taken in front of a simple 

background, a single leaf at a time. This 

makes it much easier for DL models to 

identify and understand the leaves and tends 

to generate high accuracy easily, making it 

hard to judge the models. Also, models trained 

with lab data often lack the robustness to be 

used in real field conditions 
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2) Field Dataset 

Field Datasets are datasets that were taken in 

real field conditions, with noisy backgrounds 

that include soil, other leaves, branches and 

other details not belonging to the actual leaf. 

This makes these images much harder to train 

and understand and creates more robust 

models. 

B. AUGMENTATION 
Data augmentation is the process of 

increasing the size of a dataset by altering the 

data in a way that does not falsify it, but in a 

way that makes it different enough from the 

original data to offer new and diverse data to 

train the models on. In image tasks, 

augmentation often includes noise 

augmentation (adding new noise to the image), 

transforming augmentation (e.g. rotating) and 

color altering augmentation (e.g. contrast 

shifting). 

C. ARCHITECTURE 

1) CNN based Architecture 

CNNs are highly effective for image 

classification due to their hierarchical feature 

extraction. Here, we used MobileNetV3, 

DenseNet121, EfficientNetV2B0, ResNet50V2, 

and VGG19, all pretrained on ImageNet [6] to 

improve performance on plant leaf disease 

classification. These models require a 

224x224x3 input size. MobileNetV3 uses 

depth wise separable convolutions, making it 

lightweight, with 16 layers and a 0.3 dropout 

rate to prevent overfitting. DenseNet121 uses 

dense blocks for feature reuse, with 4 blocks, 

121 layers, and a 0.2 dropout rate. 

EfficientNetV2B0 applies compound scaling 

with 12 convolution stages, optimizing depth, 

width, and resolution [23]. ResNet50V2 

incorporates residual blocks to prevent 

vanishing gradients, with 50 layers and a 0.5 

dropout rate [20]. VGG19 has 19 convolution 

layers with 3x3 kernels, max pooling, and a 

0.5 dropout rate [21]. All models use SoftMax 

activation for 3 class classifications: healthy, 

late blight, and early blight. 

2) Transformer based Architecture 

Recently, transformer-based models have 

gained attention for their ability to capture 

long range dependencies in images through 

attention mechanisms. In this study, we used 

the Transformer, and Vision Transformer 

(ViT), all pretrained on ImageNet [6]. 

These models process images by dividing 

them into patches (16x16) and using multi 

head self-attention to capture contextual 

relationships. The Transformer model divides 

the image into patches, flattens them, and 

passes them through 12 encoder layers with 8 

attention heads and a hidden dimension of 512. 

Each attention block is followed by a 

position-wise feed-forward network with 

ReLU activation, and dropout is applied with a 

rate of 0.1. The output is then passed through 

a fully connected layer with SoftMax 

activation for classification. ViT also divides 

the image into non-overlapping patches 

(16x16), applies multi-head self-attention 

with 12 layers, each having 12 attention heads 

and a hidden size of 768. Position embeddings 

are included, and the final classification is 

done using an MLP head with dropout applied 

at 0.1. SoftMax activation is used to predict 

the three disease classes. These transformer 

models excel at capturing long range 

dependencies and are effective for plant leaf 

disease classification [21]. 

 

IV. METHODOLOGY 

 To test whether or not augmentation, or 

even specific augmentation, positively impact 

the results, we tested the impact of color, 

transformation, and noise-based data 

augmentation on a lab and a field dataset with 

MobileNetV3Large [19], DenseNet121 [22], 

EfficientNetV2B0 [23], ResNet50V2 [24], 

VGG19 [21], Transformer [25], and ViT 

[26]. 

 

A. DATASETS 

 To evaluate the effectiveness of different 
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augmentation techniques for plant leaf disease 

classification, we trained models on two 

datasets: the lab-based "Potato Disease Leaf 

Dataset (PLD)" [13,14] with 4,072 images 

across 3 classes (healthy, late blight, early 

blight) and the field-based "Potato Leaf 

Disease Dataset in Uncontrolled Environment 

(PLDDUE)" [15,16] with 3,076 images across 

7 classes (Bacteria, Fungi, Healthy, Nematode, 

Pest, Phytophthora, Virus). To ensure 

comparability, we reduced PLDDUE to 3 

classes (Bacteria, Fungi, Healthy), resulting in 

1,518 images before augmentation. All images 

were resized to 224x224x3. The data was 

split into 64% training, 20% testing, and 16% 

validation, with augmentation applied only to 

the training and validation sets. Test data 

remained original across all augmentation 

configurations. Sample images from both 

datasets are shown in Figure 1. 

Fig. 1. Samples of both datasets, image classes. 

 

B. DATA AUGMENTATION 

 To increase the size of the datasets a set of 

different data augmentation techniques were 

applied them and then tested them all 

combined. One thing to note is that the original 

image will always be kept with the augmented 

images, so if for example 5 augmentations are 

applied to an image, then this will result in 6 

images being output (5 augmented and the 

original). Augmentation was carried out with 

numpy 1.24.3 and OpenCV 4.10.0.84 on 

Python 3.11.5. The exact code used can be 

found in [18] for replication. 

 

1) Color 

 The color-based augmentation techniques 

used here are brightness adjustments, 

contrast adjustments, color space channel 

shifting, and hue channel adjustments, and all 

parameters used to augment are in Table 1. 

Table 1. Color augmentation methods. 

Method Value 
Brightness -0.75, 0.75 
Contrast -0.25, 0.25 
Channel Shift 75 
Hue Shift -20, 20 

 

2) Noise 

 To add noise to the image, we use Gaussian 

noise that we apply to the image. The values 

we used mean: 0, std: 1. 

 

3) Transformation 

To augment the images with transformations, 

we apply flipping images (both horizontally 

and vertically) and rotation (90 degrees, 180 

degrees, and 270 degrees. The parameters 

used are listed in Table 2. 

 

Table 2. Transformation augmentation methods. 

Method Value 
Flip horizontal, vertical 
Rotation 90°, 180°, 270° 

 

C. MODELS  

The models used to train on the different 

augmented PLD and PLDDUE datasets are 

MobileNetV3Large, DenseNet121, 

EfficientNetV2B0, ResNet50V2, VGG19, 

Transformer, and, ViT. CNN models were 

picked partially based on their performance in 

recent benchmarks [17] one per architecture 

family to obtain and present diverse results, 

as well as on their use in recent work. All 

CNN models are largely based on the idea of 

convolutional layers. The ViT based models 

on the other hand are transformer image 
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Table 4. Results for the PLDDUE dataset. 
Model Dataset Augmentation Accuracy F1-Score Recall Precision 
DenseNet121 PLDDUE augmented all 97.05% 96.64% 97.05% 97.05% 
DenseNet121 PLDDUE none 95.41% 94.34% 95.41% 95.41% 
EfficientNetV2B0 PLDDUE augmented all 99.34% 99.49% 99.34% 99.34% 
EfficientNetV2B0 PLDDUE none 97.70% 97.08% 97.70% 98.03% 
MobileNetV3Large PLDDUE augmented all 98.36% 98.71% 98.36% 98.36% 
MobileNetV3Large PLDDUE none 97.38% 97.42% 97.38% 97.38% 
ResNet50V2 PLDDUE augmented all 95.74% 94.86% 95.74% 96.05% 
ResNet50V2 PLDDUE none 93.77% 92.12% 93.11% 93.73% 
VGG19 PLDDUE augmented all 96.07% 95.60% 96.07% 96.07% 
VGG19 PLDDUE none 94.10% 92.95% 93.77% 94.39% 

 

Table 5. Results for the PLD dataset. 
Model Dataset Augmentation Accuracy F1-Score Recall Precision 
DenseNet121 PLD augmented all 99.75% 99.78% 99.75% 99.75% 
DenseNet121 PLD none 99.01% 98.93% 99.01% 99.01% 
EfficientNetV2B0 PLD augmented all 99.26% 99.23% 99.26% 99.26% 
EfficientNetV2B0 PLD none 99.26% 99.17% 99.26% 99.26% 
MobileNetV3Large PLD augmented all 99.75% 99.73% 99.75% 99.75% 
MobileNetV3Large PLD none 99.75% 99.73% 99.75% 99.75% 
ResNet50V2 PLD augmented all 99.26% 99.23% 99.26% 99.26% 
ResNet50V2 PLD none 98.52% 98.46% 98.52% 98.52% 
VGG19 PLD augmented all 99.75% 99.72% 99.75% 99.75% 
VGG19 PLD none 99.01% 99.06% 99.01% 99.01% 

 

Table 6. Performance of Transformer-based Models on the PLDDUE Dataset with Different 

Augmentation Techniques. 
Model Dataset Augmentation Accuracy F1-Score Recall Precision 
ViT PLDDUE augmented all 99.50% 99.51% 99.50% 99.50% 
ViT PLDDUE none 94.90% 94.85% 94.90% 94.89% 
Transformer PLDDUE augmented all 99.40% 99.41% 99.40% 99.40% 
Transformer PLDDUE none 94.80% 94.75% 94.80% 94.79% 

 

Table 7. Performance of Transformer-based Models on the PLD Dataset with Different Augmentation 

Techniques. 
Model Dataset Augmentation Accuracy F1-Score Recall Precision 
ViT PLD augmented all 99.85% 99.80% 99.85% 99.86% 
ViT PLD none 98.00% 97.98% 98.00% 98.02% 
Transformer PLD augmented all 99.80% 99.75% 99.80% 99.81% 
Transformer PLD none 97.98% 97.92% 97.98% 97.99% 

classifier models. To train all of the models, 

transfer learning was employed. All models 

were pretrained on the ImageNet dataset 

before being retrained on the datasets 

mentioned above. All layers, including the 

feature-extracting layers in the CNNs and 

the ViTs were unfrozen for this and 

subsequently trained. The hyperparameters 

used can be seen in Table 3. 

 

Table 3. Hyperparameters used to train the 

models.  

Method Value 
Learning Rate 0.0001 
Loss Categorical Cross Entropy 
Optimizer Adam 
Epochs 30 
Batch Size 32 

V. RESULTS 

 The analysis of Table 4 shows that 

augmentation strategies significantly improve 

model performance on the PLDDUE dataset. 

EfficientNetV2B0 achieves the highest 

accuracy (99.34%) and F1-Score (99.49%) 

with the "augmented all" strategy, while its 

performance drops to 97.70% without 

augmentation. MobileNetV3Large also benefits 

from this strategy, reaching 98.36% accuracy, 

up from 97.38% without augmentation. 

DenseNet121 shows its best performance 

(97.05%) with "augmented all" but slightly 

declines to 95.41% without. VGG19 achieves 

its highest accuracy (96.07%) with full 

augmentation but drops to 94.10% without. 

ResNet50V2 shows limited improvement, with 

95.74% accuracy even with full augmentation, 

dropping to 93.77% without. Overall, the 

"augmented all" strategy is the most effective, 

especially for EfficientNetV2B0, 

demonstrating that combining spatial and 

visual augmentations improves model accuracy 

and robustness. Table 5 shows that 

augmentation strategies significantly improve 

performance on the PLD dataset. 

EfficientNetV2B0 achieves the highest 

accuracy (99.75%) with the "augmented all" 

strategy, highlighting the effectiveness of 

2025년 01월 스마트미디어저널 21Smart Media Journal / Vol.14, No.1 / ISSN:2287-1322



Table 8. Average Test Metrics per Augmentation and Dataset for CNNs-based and Transformer-based 

Models. 
Model Augmentation Dataset Accuracy F1-Score Recall Precision 

 Augmentation all PLD 99.55% 99.54% 99.55% 99.55% 

CNNs-based 
No Augmentation 
Augmentation all 

PLD 
PLDDUE 

99.11% 
97.31% 

99.07% 
97.06% 

99.11% 
97.31% 

99.11% 
97.37% 

 No Augmentation PLDDUE 95.67% 94.78% 95.47% 95.79% 
 Augmentation all PLD 99.01% 99.02% 99.01% 99.03% 

Transformer-based 
No Augmentation 
Augmentation all 

PLD 
PLDDUE 

98.52% 
98.95% 

98.51% 
98.96% 

98.50% 
98.95% 

98.53% 
98.97% 

 No Augmentation PLDDUE 98.02% 98.01% 98.01% 98.03% 

combining multiple augmentation techniques. 

MobileNetV3Large and VGG19 also reach 

their best performance (99.75%) with this 

strategy. VGG19’s accuracy drops to 99.01% 

without augmentation, demonstrating its 

reliance on augmentation. ResNet50V2 peaks 

at 99.26% with "augmented all" but falls to 

98.52% without, showing its dependency on 

augmentation for optimal performance. Overall, 

the "augmented all" strategy is the most 

effective, enhancing accuracy and robustness, 

with models like DenseNet121 and 

EfficientNetV2B0 benefiting the most. Single 

or no augmentation results in noticeable 

performance drops.  

 The results in Tables 6 and 7 demonstrate 

the strong impact of augmentation techniques 

on transformer-based models. In Table 6, 

Augmentation all (transform, color, noise) 

boosts the ViT and Transformer models to 

99.50% and 99.40% accuracy, respectively, 

compared to 94.90% and 94.80% without 

augmentation. Table 10 shows similar trends 

on the PLD dataset, with the ViT at 99.85%. 

Models without augmentation drop significantly, 

with accuracies of 98.00% for ViT and 97.98% 

for the Transformer. These results 

underscore the importance of data diversity 

and combined augmentation for improving 

accuracy and generalization in 

transformer-based models. 

 The analysis in Table 8, compares the 

performance of CNN-based and 

Transformer-based models across two 

datasets: PLD (lab) and PLDDUE (field). For 

CNN models, Augmentation all performed best 

on PLD and PLDDUE, achieving 99.55% and 

97.31% respectively. Transformer models 

consistently performed better with 

Augmentation all achieving 99.01% on PLD 

and 98.95% on PLDDUE, outperforming CNNs 

on the field dataset. CNNs showed an 

advantage in the lab (99.55% vs. 99.01% for 

Transformers), while Transformers excelled 

in the field (98.95% vs. 97.31% for CNNs). 

These results suggest that CNNs are more 

suited to lab environments, while Transformer 

models are more robust in real-world 

conditions, particularly with Augmentation. 

This highlights the need for tailored models 

and augmentation strategies based on the 

deployment environment. 

 

VI. CONCLUSION 

 In this study, we demonstrate that data 

augmentation techniques significantly improve 

the performance of both CNN and 

Transformer-based models for potato leaf 

disease classification. Augmentation strategies, 

including color, transformation, and 

noise-based methods, enhanced the 

robustness and accuracy of pre-trained 

models such as MobileNetV3, DenseNet121, 

EfficientNetV2B0, ResNet50V2, VGG19, 

transformer, and ViT. In controlled laboratory 

datasets (PLD), augmentation successfully 

captured disease-specific features, achieving 

high accuracy and precision. However, the 

true challenge arose in field datasets 

(PLDDUE), where environmental variability 

necessitated effective model generalization. 

Transformer-based models outperformed 

CNN-based models, particularly on the 

PLDDUE dataset. On the PLD dataset, 

Transformer models achieved an accuracy of 

99.01% with combined augmentation, behind 

CNNs at 99.70%. In contrast, on the PLDDUE 

dataset, Transformer models reached an 

accuracy of 98.95%, surpassing CNNs, which 

peaked at 97.31%. Our findings highlight that 

models trained on datasets that were enhanced 
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with advanced augmentation strategies, 

provide a more robust solution for potato leaf 

disease detection, particularly in real-world 

field conditions. The improved performance in 

the field dataset emphasizes the adaptability of 

models trained with augmentation enhanced 

data for agricultural applications. Future 

research could explore advanced techniques 

like GANs for synthetic data generation, 

domain-specific augmentations, and 

integrating additional data sources such as 

environmental conditions and soil health. 
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