
 

I. Introduction 

 

When Vehicle detection is a very critical 

part of traffic surveillance. Vehicle 

recognition and localization in route 

observance video scenes are of tidy 

significance to intelligent traffic 

management and control. The old way to 

detect vehicles by using computer vision 

algorithms has achieved outstanding 

performance. However, many noises make 

that program worse, such as background 

clutter, light shadow, and vehicle speed. 

With the trendy installation of closed-

circuit television (CCTV) cameras, 

enormous traffic video footage has been 

collected for analysis. Typically, we can 

get more data of a more distant paved road 

at a high viewing angle. We can now train 

the deep learning model for detecting 

vehicles because of that big data, which 

can reduce traffic jams, accidents or 

control the highway's flow. In the past, 

because of the lack powerful embedded 

board, we must build a server to process 

the input footage from the CCTV camera, 

and it can take money to do that. 

Therefore, if an embedded board can 

detect or track vehicles, it can reduce 

server costs and the time of data 

processing. We can say that the 

embedded systems are getting better and 

better every moment by looking at 

hardware, software, and methods. Thanks 

to nanotechnology, the power of the 

embedded board can be seen as a more 

miniature computer. Therefore, like a 
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computer, it can run as multiple threads 

and cut down the computational time. 

There are many commercial embedded 

boards such as Odroid, Raspberry pi, 

Jetson. The proposed method used in this 

paper is to choose a "matching" deep 

learning model for deploying the whole 

system on an embedded device. The 

system uses images or video sequences as 

input and giving out the vehicle object and 

the tracking id as outputs. 

 

II. Related Research 

 

The primary purpose of this step is to 

detect and track vehicles from the input 

frame or image. There are many object 

detection algorithms and object tracking 

algorithms that we can apply to this 

problem. However, because we have to 

deploy into the embedded device that is 

less powerful than PC, the "correct" 

algorithm has to be chosen carefully. 

 

2.1. Object Detection 

In the past, a system used to detect an 

object have to take a classifier for that 

specific object and evaluate it at multiple 

separate areas and ratios in the evaluate 

image. For example, the R-CNN model 

uses region proposal algorithms to 

process multiple tasks before showing the 

predicted detection. Firstly, the methods 

generate all of the possible bounding 

boxes in a picture and run a classifier. 

After getting the classification, post-

processing is accustomed to cleaning the 

predicted bounding boxes, erasing 

duplicate predictions, and recalculating 

scores on other objects in the image. As 

we can see, these pipelines are very 

complicated. Therefore, it takes much 

latency and is tough to optimize because 

every unit must be trained individually. 

YOLO [1] (you only look once) algorithm 

is extremely straightforward compared to 

the R-CNN model. The figure below 

explains the essential step of this model. 

YOLO is a single and straightforward 

convolutional neural network that predicts 

the multiple bounding boxes and class 

probability. Follow the step-by-step in 

the figure above, the system reshapes an 

image to the fixed input size such as 

240x240, runs end-to-end CNN on that 

image, and finally sets the threshold for 

the predicted results. Yolo can train the 

whole image, so we do not need to cut out 

the bounding boxes of objects to feed into 

the model. 

Moreover, because of the single CNN, 

this model can straight optimize detection 

performance. The YOLO model or the 

unified model proved that it has many 

advantages compared with the traditional 

methods. However, it slows down the 

system and does not suitable for an 

embedded device. 

Despite the state-of-the-art hardware, 

it is kind of too slow to reach real-time 

detection projects. SSD [2] does not 

resample features or pixels for the 

hypotheses bounding box and keeps the 

accuracy the same to increase the speed. 

The essential enhancement for improving 

the speed derives from getting rid of the 

proposal bounding box and consecutive 

features or pixels resampling phase. SSD 

improvements involve three main things. 

Firstly, a small convolutional filter is used 

to predict classes and offset locations of 

the bounding box. Secondly, multiple 
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independent filters or predictors are used 

to detect multiple aspect ratios. Finally, the 

SSD model applies these predictors to 

multiple feature maps in the later phases 

to detect at multiple scales.  

The lightweight MobileNet [3-5] model 

is built from a streamlined deep neural 

network architecture. This deep neural 

network model uses two hyper-

parameters which are width multiplier   

and resolution multiplier   to set up tiny and 

low latency models. Based on these ideas, 

this model can deploy into embedded 

systems and mobile devices. The prior 

works show that we must use the smaller 

model by building a model suitable for 

resource restrictions such as size, latency, 

and computation. While the prior works 

focus on the size only and do not care 

about speed, MobileNet chooses to shrink 

the network's width. 

Based on the related work above, we are 

sure that using the YOLO algorithm is 

unsuitable for embedded and mobile 

devices. Therefore, using the SSD 

algorithm and MobileNet algorithm is more 

sufficient for the embedded system, which 

this thesis mainly focuses on. SSDLite is 

the lite version of the SSD model, a 

mobile-friendly alternative to regular SSD. 

This lite model replaces all regular 

convolution with depthwise separable 

convolutions in the SSD prediction layers. 

This design model seems to be suitable for 

the design of MobileNet, and it takes less 

computational cost than usual. SSDLite 

replaces many heavy layers, so the 

parameters and latency reduce 

significantly, as shown Table 1. 

The experiment also illustrates that the 

MobileNet + SSDLite is more suitable for 

the embedded device than ordering 

algorithms such as YOLO and SSD because 

of the low latency and parameters. Based 

on the table information, we choose the 

SSDLite MobileNet (figure 1) as our 

backbone because it is ten times smaller 

and twenty times more efficient whistle 

still got the same mAP as the YOLOv2 

COCO dataset. 

Table 1. The comparison of the parameters and 

latency between SSD and SSDLite(Madds stands 

for Multiply-Add operations, representing the 

cumulative count of multiply-and-add operations) 

 Params Madds 

SSD 14.8M 1.25B 
SSDLITE 2.1M 0.35B 

 

2.2. Object Tracking 

Object tracking is an algorithm to track 

single or multiple objects overtimes in the 

input frame sequence. This algorithm is 

more profound than object detection 

because we need to care about image 

(video) sequences instead of a single one. 

We cannot easily split the frame from 

video and process it like a single image 

because we must focus on more features 

and noises besides detecting the bounding 

box: the ID of an object must remain the 

same through frames, when the object is 

overlapped or disappear in some frame, 

the system can still detect the correct ID 

of that object, and the problem about the 

speed in the realtime project. Object 

tracking can be divided into two primary 

approaches: single object tracking and 

multiple object tracking. 

 • Single object tracking (SOT) focuses on 

detecting only one object in the entire 

video. Because it tracks only one object, 

we need to provide the initial bounding box 

of that object. 
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• Multiple object tracking (MOT) tracks 

multiple objects that appear in the video, 

including new objects. MOT is more 

complicated than SOT and receives more 

notice from researchers. 

 The centroid tracking algorithm is built 

from the OpenCV library for object 

tracking. Besides, object tracking has 

three processes which are: 

• Getting an initial set of a detected 

object which can be an input of detected 

bounding box coordinates 

• With each initial detection, mark a 

unique ID for them 

• Tracking objects moving in frames and 

remain the assignment of unique IDs 

By applying a unique ID for each object, 

we can count them in the sequence. This 

type of algorithm is fundamental to order 

image processing or computer vision 

algorithm. The centroid tracking is based 

on the Euclidean distance between two 

centroids of the existing objects and the 

new detected object's centroids in the 

subsequent frames.  

𝑑(𝑝, 𝑞) = ඥ∑ (𝑞௜ − 𝑝௜)ଶ௡
௜ୀଵ  (1) 

where: 

𝑝, 𝑞: two points in Euclidean n-space 

𝑞௜, 𝑝௜: Euclidean vectors, starting from an 

initial point 

𝑛: number of spaces, n-space 

However, there are three main 

drawbacks of this centroid tracking 

algorithm.  

The first problem is that this approach 

needs to be run on every frame. There is 

no issue when running the tracking 

algorithms on every frame if we use fast 

object detectors such as Haar cascades or 

color thresholding. However, the 

processing pipeline speed significantly 

slows down if we use a deep learning 

object detector neural network such as 

Fig. 1. SSDLiteMobileNetV2 architecture 
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YOLO, SSD on a resource-constrained 

system.  

The second problem is that the centroid 

tracking algorithm assumes that a unique 

object's centroid must lie close together 

from the frame by frame. This assumption 

only works when we represent a 3D world 

with 2D frames, which means it is 

impossible when objects overlap. In that 

case, the object ID may switch from one to 

another. 

The third problem, which is mainly 

related to the vehicle tracking project, is 

its speed. If the behind and also the front 

vehicle accelerate speed, so in the 

subsequent, the centroid of the behind 

vehicle is minimum Euclidean distance 

compare with the front vehicle. 

DeepSORT [7-8] is developed to solve 

the problem of many ID switches. It uses 

deep learning neural networks to extract 

the object's features to increase accuracy 

in the mapping stage. Moreover, a 

matching cascade was built to contact the 

object that disappears in some frames. 

In multiple object tracking, especially in 

tracking-by-detection algorithms, two 

main factors affect tracking performance: 

• Data association focuses on data 

connection, especially criteria to choose 

the proper connection of new detection to 

tracking objects stored 

• Track life cycle management focuses on 

the life cycle of a tracked object that has 

been stored, including when it initializes 

the tracking stage, when it stops, and when 

it deletes the tracked object. 

In DeepSORT, data association is solved 

by the Hungarian algorithm, the same as 

SORT. However, the connection is based 

on IOU and focuses on other factors such 

as distance between new detection 

coordinates and tracked points and the 

cosine distance between two feature 

vectors. 

 

III. Optimization 

 

3.1. Quantization 

Quantization is a technique for storing 

tensors and performing computations at 

lower bit widths than floating-point 

accuracy. A quantized model rather than 

accomplishes some of the tensor's 

operations with floating-point values 

executes with integers. This idea 

approves for a more condensed model 

representation, and the use performance is 

higher in many hardware systems by 

vectorized operations. The model that 

supports INT8 quantization reduces 

memory bandwidth requirements and size 

four times that traditional FP32 models. 

Quantization is generally a technique to 

increase the inference's speed. Moreover, 

quantized operators only support the 

forward pass.  

Quantizing a model means converting all 

of the floating-point 32 bit (such as 

activation outputs or weights) to the 

nearest fixed point 8-bit numbers. Based 

on this method, the model is much smaller 

and faster. Even though the 8-bit model 

can be less accurate, the neural network's 

inference precise is not reasonably 

affected. There are two forms of quantized 

technique which are quantization aware 

training that quantize weights and 

activations during model training and 

post-training quantization that quantize 

them after model training. 
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3.2. Edge TPU device 

The Edge TPU only supports a fixed set 

of neural network architectures and 

operations to afford high inference time 

with a low-power cost. 

Fig. 2. Coral Edge TPU 

 

 The Edge TPU can deal with deep feed-

forward neural networks like CNN 

(convolutional neural network). However, 

it only supports TensorFlow lite models 

quantized to 8-bit bandwidths and 

compiled for the Edge TPU specifically. 

Besides. TensorFlow lite model is a 

lightweight version that is created for 

embedded and mobile devices. We can get 

a low-latency inference in a tiny binary 

size in which interpreter kernels and the 

TFLite model are much smaller. So we 

converted the trained SSDLite MobileNet 

V2 to TFLite model using post-training 

quantization. 

 

Fig. 3. The Edge TPU's workflow of creating a 

model 

 

 

IV. Experimental Results 

 

We trained the vehicles detecting and 

vehicles tracking model using a 

computer system equipped with an 

Intel i9-9900K CPU and an NVIDIA 

GeForce RTX 2080 Ti GPU. And I used 

PyTorch version 1.7.0 and Python 

version 3.8. 

 

4.1. Vehicle detection  

 

MIO-TCD [6] localization dataset 

includes 137,743 high-resolution pictures 

at different day times and different months 

by almost thousands of CCTV cameras. 

Those pictures have been chosen from a 

wide range of vehicle detection challenges. 

This dataset includes one or more 

foreground objects in 11 labels. 

After we combine our lab data and the 

MIO-TCD data, the data structure is 

shown in the table below. 

 

Table 2. Our data structure 

1500 lab data 
train 

21820 MIO-
TCD data train 

4372 MIO-
TCD data dev 

1489 MIO-
TCD data test 

 

Fig. 4. Vehicle dataset visualization 
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Fig. 5. Labels correlogram 

 

After training SSDMobileNetV2 with our 

dataset of around 48,000 steps, we got the 

below results. First of all, the total loss is 

quite good, which is around 0.9. The 

second thing that we care about is the mAP 

value, which is close to 0.88. 

Fig. 6. SSDMobileNet total loss 

Fig. 7. SSDMobileNet mAP graphs 

 

As mentioned above, we deploy our 

program on PC and OrangePi3 board to 

test our model performance and speed. 

The table below shows the inference time 

of the SSDMobileNetV2 model and YOLO 

model in our PC. When getting the 

inference time result of these two 

algorithms, we do not use GPU and 

multiple CPU threads to detect.  

 

Table 3. SSDMobileNetV2 and YOLO inference 

time in PC 

PC SSDMobileNetV2 YOLO 

Inference time ~0.03s ~0.06s 

 

Base on that inference result, it seems to 

be that the SSDMobileNetV2 speed is 

much faster than YOLO without GPU 

supported, which is not appear in an 

embedded device. We also run the 

program on the OrangePi3 board to get the 

inference time on the real-life embedded 

board. The comparison of quantized model 

inference time and the none one is also 

shown in the table below. 

 

Table 4. SSDMobileNetV2 and YOLO inference 

time in PC 

 

4.2. Vehicle Tracking 

We used the dataset of the re-

identification vehicle for our training called 

VeRi [9-11]. This comprehensive range 

dataset is used for semantic analysis of 

vehicles in real life. The VeRi dataset's 

OrangePi3 board 
Inference time with 

Coral edge TPU 

SSDMobileNetV2 without 
quantization 

~1.3s 

SSDMobileNetV2 with 
quantization 

~0.06s 

YOLO with  
quantization 

~1.0s 
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target is to contribute an overall 

benchmark to validate large-scale 

computer vision algorithms' performance 

and facilitate a large-scale of a current 

research topic related to “vehicles."  

The VeRi dataset includes 50,000 images 

of 776 vehicles in real-world scenes 

covering a 1.0 𝑘𝑚ଶ  zone in 24 hours.  

Therefore, this dataset is more scalable 

for real-life applications. The pictures are 

captured in a real-world abandoned 

surveillance scene and labeled with many 

attributes such as brands, types, bounding 

boxes, colors. Therefore, the complicated 

models can be trained and evaluated for 

vehicle Re-Id. Each vehicle is taken by 2 

~18 CCTV cameras in different 

resolutions, viewpoints, occlusions, 

illuminations, which contribute high 

recurrence percentage in the real-life 

environment. The dataset is also labeled 

with spatiotemporal information and 

satisfactory license plates such as plate 

bounding boxes, plate numbers, the 

distances between neighboring cameras, 

and vehicles' timestamps. 

After getting datasets for detecting 

vehicles, we started to train the model for 

tracking vehicles called the DeepSORT 

model. The accuracy is outstanding at 

0.9609.  

Fig. 8. DeepSort accuracy graph 

 

As we can see, the inference time of 

tracking vehicles on an embedded device 

is twice as in a PC. We can see that 

SSDMobileNetV2+DeepSORT model is 

faster than YOLO+DeepSORT model. 

Table 5. The total time of tracking program on 

YOLO and SSDMobileNetV2 backbone model 

 PC OrangePi3 board 

SSDMobileNetV2+ 
DeepSORT 

~0.07s ~1.7s 

YOLO + DeepSORT 0.15s 18s 

 

Fig. 9. Vehicle tracking results 

 

V. Conclusion 

 

Vehicle detecting and tracking programs 

are popular right now, but we must add 

more techniques to reach a high detecting 

stage and tracking accuracy. In this thesis, 

the effective model SSDMobileNetV2 is 

used to increase inference time on the 

embedded device. Moreover, the 

quantization technique is added when 

training the model suitable for the 

embedded device and Coral edge TPU to 

increase inference speed. Besides those 

advantages, the SSDMobileNetV2 model is 

not deeper as the current state-of-art 

detection model, so it is hard to recognize 

the small object and miss the detection in 

some frames when it has many vehicles. 

However, our model outperforms the 

standard model YOLO in the inference time 

in both PCs without using GPU and 

embedded devices.  

The DeepSORT model is used to get 

better performance results than the SORT 

model's previous version in the tracking 
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stage. The DeepSORT model trains on the 

VeRi vehicle dataset can get numerous 

features to define and track the vehicle, 

such as color, type, and centroid distance. 

After testing our program in some highway 

videos, it is excellent, and it can be applied 

in a real-life environment without 

hesitation. However, because the process 

to get a result from the model is too long 

in the embedded board, it needs to develop 

more.  

The enhancement of our project is based 

on two designed models. First, it can be 

great to reduce the detecting model's 

depth, leading to a faster model. Moreover, 

optimize the code to get better results in 

the inference time is also a solution. 

Second, we may need to add quantization 

for the DeepSORT model training stage to 

deploy this model to the embedded board. 

In conclusion, the combination of 

SSDMobileNet V2 and DeepSORT is a 

reasonable solution for vehicle detection 

and tracking on the embedded board. 
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