

I. Introduction

When Vehicle detection is a very critical

part of traffic surveillance. Vehicle

recognition and localization in route

observance video scenes are of tidy

significance to intelligent traffic

management and control. The old way to

detect vehicles by using computer vision

algorithms has achieved outstanding

performance. However, many noises make

that program worse, such as background

clutter, light shadow, and vehicle speed.

With the trendy installation of closed-

circuit television (CCTV) cameras,

enormous traffic video footage has been

collected for analysis. Typically, we can

get more data of a more distant paved road

at a high viewing angle. We can now train

the deep learning model for detecting

vehicles because of that big data, which

can reduce traffic jams, accidents or

control the highway's flow. In the past,

because of the lack powerful embedded

board, we must build a server to process

the input footage from the CCTV camera,

and it can take money to do that.

Therefore, if an embedded board can

detect or track vehicles, it can reduce

server costs and the time of data

processing. We can say that the

embedded systems are getting better and

better every moment by looking at

hardware, software, and methods. Thanks

to nanotechnology, the power of the

embedded board can be seen as a more

miniature computer. Therefore, like a

Deep Learning Model on Embedded Board for Vehicle

Detection and Vehicle Tracking

Luong Thanh Tra, Nguyen Minh Nguyen, Jongtae Lim,

Hyungsik Shin, Seongwon Cho

Abstract

This paper proposes a deep learning model to detect and track the vehicle on an embedded device

such as Odroid, Orange Pi, etc. This system includes two main parts: vehicle detection and vehicle

tracking. Since deep learning has achieved high accuracy over the classical image processing

method, object detectors can detect vehicles in the street and highway. It can be normal to run

the computer detection program with graphic processor unit (GPU) support, but it is challenging

to run it on the embedded board with no GPU support and low central processing unit (CPU)

performance. This paper focuses on balancing edge-computing-based deep learning object

detection's accuracy and performance using additional techniques such as quantization, edge TPU,

and multiple threads. SSDLite with MobileNet backbone is chosen due to its lighter than other

networks but still obtain good performance compare with Yolo.

 Keywords : Optimize model|Vehicle detection|Vehicle tracking|Embedded device|SSDLite| MobileNet

* This research was supported by Ministry of SMEs and Startups(RS-2024-00448168, RS-2024-00434571), Ministry

of the Interior and Safety(RS-2024-00461780).

Manuscript : 2024. 12. 30

Confirmation of Publication:2025.01.20

Corresponding Author : Seongwon Cho e-mail:

swcho@hongik.ac.kr

2025년 02월 스마트미디어저널 43Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2025.14.2.43

computer, it can run as multiple threads

and cut down the computational time.

There are many commercial embedded

boards such as Odroid, Raspberry pi,

Jetson. The proposed method used in this

paper is to choose a "matching" deep

learning model for deploying the whole

system on an embedded device. The

system uses images or video sequences as

input and giving out the vehicle object and

the tracking id as outputs.

II. Related Research

The primary purpose of this step is to

detect and track vehicles from the input

frame or image. There are many object

detection algorithms and object tracking

algorithms that we can apply to this

problem. However, because we have to

deploy into the embedded device that is

less powerful than PC, the "correct"

algorithm has to be chosen carefully.

2.1. Object Detection

In the past, a system used to detect an

object have to take a classifier for that

specific object and evaluate it at multiple

separate areas and ratios in the evaluate

image. For example, the R-CNN model

uses region proposal algorithms to

process multiple tasks before showing the

predicted detection. Firstly, the methods

generate all of the possible bounding

boxes in a picture and run a classifier.

After getting the classification, post-

processing is accustomed to cleaning the

predicted bounding boxes, erasing

duplicate predictions, and recalculating

scores on other objects in the image. As

we can see, these pipelines are very

complicated. Therefore, it takes much

latency and is tough to optimize because

every unit must be trained individually.

YOLO [1] (you only look once) algorithm

is extremely straightforward compared to

the R-CNN model. The figure below

explains the essential step of this model.

YOLO is a single and straightforward

convolutional neural network that predicts

the multiple bounding boxes and class

probability. Follow the step-by-step in

the figure above, the system reshapes an

image to the fixed input size such as

240x240, runs end-to-end CNN on that

image, and finally sets the threshold for

the predicted results. Yolo can train the

whole image, so we do not need to cut out

the bounding boxes of objects to feed into

the model.

Moreover, because of the single CNN,

this model can straight optimize detection

performance. The YOLO model or the

unified model proved that it has many

advantages compared with the traditional

methods. However, it slows down the

system and does not suitable for an

embedded device.

Despite the state-of-the-art hardware,

it is kind of too slow to reach real-time

detection projects. SSD [2] does not

resample features or pixels for the

hypotheses bounding box and keeps the

accuracy the same to increase the speed.

The essential enhancement for improving

the speed derives from getting rid of the

proposal bounding box and consecutive

features or pixels resampling phase. SSD

improvements involve three main things.

Firstly, a small convolutional filter is used

to predict classes and offset locations of

the bounding box. Secondly, multiple

44 2025년 02월 스마트미디어저널 Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

independent filters or predictors are used

to detect multiple aspect ratios. Finally, the

SSD model applies these predictors to

multiple feature maps in the later phases

to detect at multiple scales.

The lightweight MobileNet [3-5] model

is built from a streamlined deep neural

network architecture. This deep neural

network model uses two hyper-

parameters which are width multiplier

and resolution multiplier to set up tiny and

low latency models. Based on these ideas,

this model can deploy into embedded

systems and mobile devices. The prior

works show that we must use the smaller

model by building a model suitable for

resource restrictions such as size, latency,

and computation. While the prior works

focus on the size only and do not care

about speed, MobileNet chooses to shrink

the network's width.

Based on the related work above, we are

sure that using the YOLO algorithm is

unsuitable for embedded and mobile

devices. Therefore, using the SSD

algorithm and MobileNet algorithm is more

sufficient for the embedded system, which

this thesis mainly focuses on. SSDLite is

the lite version of the SSD model, a

mobile-friendly alternative to regular SSD.

This lite model replaces all regular

convolution with depthwise separable

convolutions in the SSD prediction layers.

This design model seems to be suitable for

the design of MobileNet, and it takes less

computational cost than usual. SSDLite

replaces many heavy layers, so the

parameters and latency reduce

significantly, as shown Table 1.

The experiment also illustrates that the

MobileNet + SSDLite is more suitable for

the embedded device than ordering

algorithms such as YOLO and SSD because

of the low latency and parameters. Based

on the table information, we choose the

SSDLite MobileNet (figure 1) as our

backbone because it is ten times smaller

and twenty times more efficient whistle

still got the same mAP as the YOLOv2

COCO dataset.

Table 1. The comparison of the parameters and

latency between SSD and SSDLite(Madds stands

for Multiply-Add operations, representing the

cumulative count of multiply-and-add operations)

 Params Madds

SSD 14.8M 1.25B
SSDLITE 2.1M 0.35B

2.2. Object Tracking

Object tracking is an algorithm to track

single or multiple objects overtimes in the

input frame sequence. This algorithm is

more profound than object detection

because we need to care about image

(video) sequences instead of a single one.

We cannot easily split the frame from

video and process it like a single image

because we must focus on more features

and noises besides detecting the bounding

box: the ID of an object must remain the

same through frames, when the object is

overlapped or disappear in some frame,

the system can still detect the correct ID

of that object, and the problem about the

speed in the realtime project. Object

tracking can be divided into two primary

approaches: single object tracking and

multiple object tracking.

 • Single object tracking (SOT) focuses on

detecting only one object in the entire

video. Because it tracks only one object,

we need to provide the initial bounding box

of that object.

2025년 02월 스마트미디어저널 45Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

• Multiple object tracking (MOT) tracks

multiple objects that appear in the video,

including new objects. MOT is more

complicated than SOT and receives more

notice from researchers.

 The centroid tracking algorithm is built

from the OpenCV library for object

tracking. Besides, object tracking has

three processes which are:

• Getting an initial set of a detected

object which can be an input of detected

bounding box coordinates

• With each initial detection, mark a

unique ID for them

• Tracking objects moving in frames and

remain the assignment of unique IDs

By applying a unique ID for each object,

we can count them in the sequence. This

type of algorithm is fundamental to order

image processing or computer vision

algorithm. The centroid tracking is based

on the Euclidean distance between two

centroids of the existing objects and the

new detected object's centroids in the

subsequent frames.

𝑑(𝑝, 𝑞) = ඥ∑ (𝑞௜ − 𝑝௜)ଶ௡
௜ୀଵ (1)

where:

𝑝, 𝑞: two points in Euclidean n-space

𝑞௜, 𝑝௜: Euclidean vectors, starting from an

initial point

𝑛: number of spaces, n-space

However, there are three main

drawbacks of this centroid tracking

algorithm.

The first problem is that this approach

needs to be run on every frame. There is

no issue when running the tracking

algorithms on every frame if we use fast

object detectors such as Haar cascades or

color thresholding. However, the

processing pipeline speed significantly

slows down if we use a deep learning

object detector neural network such as

Fig. 1. SSDLiteMobileNetV2 architecture

46 2025년 02월 스마트미디어저널 Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

YOLO, SSD on a resource-constrained

system.

The second problem is that the centroid

tracking algorithm assumes that a unique

object's centroid must lie close together

from the frame by frame. This assumption

only works when we represent a 3D world

with 2D frames, which means it is

impossible when objects overlap. In that

case, the object ID may switch from one to

another.

The third problem, which is mainly

related to the vehicle tracking project, is

its speed. If the behind and also the front

vehicle accelerate speed, so in the

subsequent, the centroid of the behind

vehicle is minimum Euclidean distance

compare with the front vehicle.

DeepSORT [7-8] is developed to solve

the problem of many ID switches. It uses

deep learning neural networks to extract

the object's features to increase accuracy

in the mapping stage. Moreover, a

matching cascade was built to contact the

object that disappears in some frames.

In multiple object tracking, especially in

tracking-by-detection algorithms, two

main factors affect tracking performance:

• Data association focuses on data

connection, especially criteria to choose

the proper connection of new detection to

tracking objects stored

• Track life cycle management focuses on

the life cycle of a tracked object that has

been stored, including when it initializes

the tracking stage, when it stops, and when

it deletes the tracked object.

In DeepSORT, data association is solved

by the Hungarian algorithm, the same as

SORT. However, the connection is based

on IOU and focuses on other factors such

as distance between new detection

coordinates and tracked points and the

cosine distance between two feature

vectors.

III. Optimization

3.1. Quantization

Quantization is a technique for storing

tensors and performing computations at

lower bit widths than floating-point

accuracy. A quantized model rather than

accomplishes some of the tensor's

operations with floating-point values

executes with integers. This idea

approves for a more condensed model

representation, and the use performance is

higher in many hardware systems by

vectorized operations. The model that

supports INT8 quantization reduces

memory bandwidth requirements and size

four times that traditional FP32 models.

Quantization is generally a technique to

increase the inference's speed. Moreover,

quantized operators only support the

forward pass.

Quantizing a model means converting all

of the floating-point 32 bit (such as

activation outputs or weights) to the

nearest fixed point 8-bit numbers. Based

on this method, the model is much smaller

and faster. Even though the 8-bit model

can be less accurate, the neural network's

inference precise is not reasonably

affected. There are two forms of quantized

technique which are quantization aware

training that quantize weights and

activations during model training and

post-training quantization that quantize

them after model training.

2025년 02월 스마트미디어저널 47Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

3.2. Edge TPU device

The Edge TPU only supports a fixed set

of neural network architectures and

operations to afford high inference time

with a low-power cost.

Fig. 2. Coral Edge TPU

 The Edge TPU can deal with deep feed-

forward neural networks like CNN

(convolutional neural network). However,

it only supports TensorFlow lite models

quantized to 8-bit bandwidths and

compiled for the Edge TPU specifically.

Besides. TensorFlow lite model is a

lightweight version that is created for

embedded and mobile devices. We can get

a low-latency inference in a tiny binary

size in which interpreter kernels and the

TFLite model are much smaller. So we

converted the trained SSDLite MobileNet

V2 to TFLite model using post-training

quantization.

Fig. 3. The Edge TPU's workflow of creating a

model

IV. Experimental Results

We trained the vehicles detecting and

vehicles tracking model using a

computer system equipped with an

Intel i9-9900K CPU and an NVIDIA

GeForce RTX 2080 Ti GPU. And I used

PyTorch version 1.7.0 and Python

version 3.8.

4.1. Vehicle detection

MIO-TCD [6] localization dataset

includes 137,743 high-resolution pictures

at different day times and different months

by almost thousands of CCTV cameras.

Those pictures have been chosen from a

wide range of vehicle detection challenges.

This dataset includes one or more

foreground objects in 11 labels.

After we combine our lab data and the

MIO-TCD data, the data structure is

shown in the table below.

Table 2. Our data structure

1500 lab data
train

21820 MIO-
TCD data train

4372 MIO-
TCD data dev

1489 MIO-
TCD data test

Fig. 4. Vehicle dataset visualization

TensorFlow model
32-bit float numbers

TensorFlow model
Frozen graph

.pb file

TensorFlow Lite
8-bit fixed numbers

Edge TPU model
.tflite file

Coral Hardware

TRAIN EXPORT

CONVERT

COMPILE DEPLOY

Quantization

TensorFlow Lite Converter

48 2025년 02월 스마트미디어저널 Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

Fig. 5. Labels correlogram

After training SSDMobileNetV2 with our

dataset of around 48,000 steps, we got the

below results. First of all, the total loss is

quite good, which is around 0.9. The

second thing that we care about is the mAP

value, which is close to 0.88.

Fig. 6. SSDMobileNet total loss

Fig. 7. SSDMobileNet mAP graphs

As mentioned above, we deploy our

program on PC and OrangePi3 board to

test our model performance and speed.

The table below shows the inference time

of the SSDMobileNetV2 model and YOLO

model in our PC. When getting the

inference time result of these two

algorithms, we do not use GPU and

multiple CPU threads to detect.

Table 3. SSDMobileNetV2 and YOLO inference

time in PC

PC SSDMobileNetV2 YOLO

Inference time ~0.03s ~0.06s

Base on that inference result, it seems to

be that the SSDMobileNetV2 speed is

much faster than YOLO without GPU

supported, which is not appear in an

embedded device. We also run the

program on the OrangePi3 board to get the

inference time on the real-life embedded

board. The comparison of quantized model

inference time and the none one is also

shown in the table below.

Table 4. SSDMobileNetV2 and YOLO inference

time in PC

4.2. Vehicle Tracking

We used the dataset of the re-

identification vehicle for our training called

VeRi [9-11]. This comprehensive range

dataset is used for semantic analysis of

vehicles in real life. The VeRi dataset's

OrangePi3 board
Inference time with

Coral edge TPU

SSDMobileNetV2 without
quantization

~1.3s

SSDMobileNetV2 with
quantization

~0.06s

YOLO with
quantization

~1.0s

0

4

8

12

16

0 10k 20k 30k 40k

Step 48k, Value: 0.9237, Time: 22h 5m 24s

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k

mAP mAP large

Step 48k, Value: 0.8773,
Time: 22h 5m 24s

Step 48k, Value: 0.8773,
Time: 22h 5m 24s

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k

mAP@.50IOU

Step 48k, Value: 0.9887,
Time: 22h 5m 24s

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k

mAP@.750IOU

Step 48k, Value: 0.9672,
Time: 22h 5m 24s

2025년 02월 스마트미디어저널 49Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

target is to contribute an overall

benchmark to validate large-scale

computer vision algorithms' performance

and facilitate a large-scale of a current

research topic related to “vehicles."

The VeRi dataset includes 50,000 images

of 776 vehicles in real-world scenes

covering a 1.0 𝑘𝑚ଶ zone in 24 hours.

Therefore, this dataset is more scalable

for real-life applications. The pictures are

captured in a real-world abandoned

surveillance scene and labeled with many

attributes such as brands, types, bounding

boxes, colors. Therefore, the complicated

models can be trained and evaluated for

vehicle Re-Id. Each vehicle is taken by 2

~18 CCTV cameras in different

resolutions, viewpoints, occlusions,

illuminations, which contribute high

recurrence percentage in the real-life

environment. The dataset is also labeled

with spatiotemporal information and

satisfactory license plates such as plate

bounding boxes, plate numbers, the

distances between neighboring cameras,

and vehicles' timestamps.

After getting datasets for detecting

vehicles, we started to train the model for

tracking vehicles called the DeepSORT

model. The accuracy is outstanding at

0.9609.

Fig. 8. DeepSort accuracy graph

As we can see, the inference time of

tracking vehicles on an embedded device

is twice as in a PC. We can see that

SSDMobileNetV2+DeepSORT model is

faster than YOLO+DeepSORT model.

Table 5. The total time of tracking program on

YOLO and SSDMobileNetV2 backbone model

 PC OrangePi3 board

SSDMobileNetV2+
DeepSORT

~0.07s ~1.7s

YOLO + DeepSORT 0.15s 18s

Fig. 9. Vehicle tracking results

V. Conclusion

Vehicle detecting and tracking programs

are popular right now, but we must add

more techniques to reach a high detecting

stage and tracking accuracy. In this thesis,

the effective model SSDMobileNetV2 is

used to increase inference time on the

embedded device. Moreover, the

quantization technique is added when

training the model suitable for the

embedded device and Coral edge TPU to

increase inference speed. Besides those

advantages, the SSDMobileNetV2 model is

not deeper as the current state-of-art

detection model, so it is hard to recognize

the small object and miss the detection in

some frames when it has many vehicles.

However, our model outperforms the

standard model YOLO in the inference time

in both PCs without using GPU and

embedded devices.

The DeepSORT model is used to get

better performance results than the SORT

model's previous version in the tracking

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k 60k

Step 63k, Value: 0.9609, Time: 1h 54m 58s

50 2025년 02월 스마트미디어저널 Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

stage. The DeepSORT model trains on the

VeRi vehicle dataset can get numerous

features to define and track the vehicle,

such as color, type, and centroid distance.

After testing our program in some highway

videos, it is excellent, and it can be applied

in a real-life environment without

hesitation. However, because the process

to get a result from the model is too long

in the embedded board, it needs to develop

more.

The enhancement of our project is based

on two designed models. First, it can be

great to reduce the detecting model's

depth, leading to a faster model. Moreover,

optimize the code to get better results in

the inference time is also a solution.

Second, we may need to add quantization

for the DeepSORT model training stage to

deploy this model to the embedded board.

In conclusion, the combination of

SSDMobileNet V2 and DeepSORT is a

reasonable solution for vehicle detection

and tracking on the embedded board.

REFERENCES

[1]J. Redmon, S. Divvala, R. Girshick, and

A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proc. Of

IEEE Conf on Computer Vision and
Pattern Recognition, pp. 779-788, May

2016.

[2]W. Liu, D. Anguelov, D. Erhan, C.

Szegedy, S. Reed, C. Y. Fu, and A. C.

Berg, “Ssd: Single shot multiBox

detector,” in Proc. Of 14th European

Conf. on Computer Vision-ECCV, pp.

21-37, Amsterdam, The Netherlans,

Oct. 2016.

[3]G. Howard, M. Zhu, B. Chen, D.

Kalenichenko, W. Wang, T. Weyand and

H. Adam, “Mobilenets: Efficient

convolutional neural networks for

mobile vision applications”, arXiv

preprint arXiv:1704.04861, Apr. 2017.

[4]M. Sandler, A. Howard, M. Zhu, A.

Zhmoginov, and L. C. Chen,

“Mobilenetv2: Inverted residuals and

linear bottlenecks,” in Proc. of IEEE

Conf. on Computer Vision and Pattern
Recognition, pp. 4510-4520, Mar. 2019.

[5]Howard, M. Sandler, G. Chu, L. C. Chen,

B. Chen, M. Tan and H. Adam,

“Searching for mobilenetv3”, in Proc. of

IEEE/CVF Conf. on Computer Vision, pp.

1314-1324, Nov. 2019.

[6]Z. Luo, F. B. Charron, C. Lemaire, J.

Konrad, S. Li, A. Mishra, A. Achkar, J.

Eichel and P.M Jodoin, “MIO-TCD: A

new benchmark dataset for vehicle

classification and localization,” IEEE

Trans. Image Processing, vol. 27, no. 10,

pp. 5129-5141, Oct. 2018.

[7]Bewley, Z. Ge, L. Ott, F. Ramos and B.

Upcroft, “Simple online and realtime

tracking,” in Proc. of IEEE Conf. on

Image Processing, pp. 3464-3468, Sep.

2017.

[8]N. Wojke, A. Bewley and D. Paulus,

“Simple online and realtime tracking

with a deep association metric,” in Proc.

of 2017 IEEE Conf. on Image
Processing, pp. 3645-3649, Sep. 2017.

[9]X. Liu, W. Liu, T. Mei and H. Ma, “Provid:

Progressive and multimodal vehicle

reidentification for large-scale urban

surveillance,” IEEE Trans. Multimedia.,

vol. 20, no. 3, pp. 645-658, Mar. 2018.

[10]X. Liu, W. Liu, T. Mei and H. Ma, “A

deep learning-based approach to

progressive vehicle re-identification

for urban surveillance,” in Proc. of 14th

European Conf. on Computer Vision,

pp.869-884, Amsterdam, The

Netherlands, Oct. 2016.

[11]X. Liu, W. Liu, H. Ma and H. Fu, “Large-

scale vehicle re-identification in urban

surveillance videos,” in Proc. of IEEE

2025년 02월 스마트미디어저널 51Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

Conf. on Multimedia and Expo, pp. 1-6,

Jul. 2016.

Authors

Luong Thanh Tra

He received B.S degree from

Viet Nam National University

Ho Chi Minh City, Vietnam and

M.S degree from Hongik University, Korea.

Nguyen Minh Nguyen

He received his B.S. and MS

degrees from Ton Duc Thang

University and Sejong

University, respectively. He

is a graduate student of

Hongik University Ph.D. program.

Jong Tae Lim

He received his B.S. degree

from Seoul National University,

Korea, He received his Ph.D

degree from University of

Michigan, Ann Arbor, MI, USA in 2001. He has

been a professor of Hongik University, Seoul,

Korea.

Hyungsik Shin

He received his B.S. degree

from Seoul National University,

Korea in 2003. He received his

Ph.D degree from Stanford

University, USA in 2001. He has been a

professor of Hongik University, Seoul, Korea.

Seongwon Cho

He received his B.S. degree

from Seoul National

University, Korea in 1982, He

received his MS and Ph.D

degrees from Purdue University, West

Lafayette, Indiana, USA in 1987 and 1992,

respectively. He has been a professor of

Hongik University, Seoul, Korea.

52 2025년 02월 스마트미디어저널 Smart Media Journal / Vol.14, No.2 / ISSN:2287-1322

