
 

I. INTRODUCTION 

Alzheimer’s disease (AD) remains one 

of the most pressing public health 

challenges[1], largely due to its insidious 

onset and progressive nature. Early 

diagnosis is critical for effective 

intervention, yet the subtle structural 

changes in the brain that herald AD often 

evade conventional diagnostic methods. 

With the advent of advanced neuroimaging 

techniques, particularly magnetic 

resonance imaging (MRI), clinicians now 

can capture high-resolution images of the 

brain. However, interpreting these images 

for early signs of Alzheimer’s requires 

both expert knowledge and robust 

computational tools. Recent advances in 

deep learning have demonstrated 

impressive accuracy in classifying brain 

MRI scans into various stages of AD 

progression, yet many of these 

convolutional neural network (CNN) 

models remain opaque[2], leaving 

clinicians hesitant to fully trust their 

automated predictions. 

In response to this challenge, 

explainable artificial intelligence (XAI) 

methods have been developed to provide 

visual insights into how deep learning 

models make their decisions. Techniques 

such as Grad-CAM, LIME, and SHAP 

have shown promise in highlighting the 

critical regions of the brain that influence 

the model’s predictions, thereby offering a 

window into the “black box” of CNN-based 

diagnostic systems[3]. For example, 

Alami et al.[4] demonstrated how visual 

explanation methods could enhance the 

interpretability of CNN models in AD 

detection, while Vetrithangam et al.[5] 
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integrated clustering approaches with 

CNNs to further improve model 

transparency. Our previous study [6] 

addressed the challenges of skewed data 

in MRI-based Alzheimer’s diagnosis by 

comparing various CNN architectures and 

applying resampling techniques to improve 

classification fairness. These studies 

underscore the necessity of bridging 

high-performance deep learning with 

interpretable outputs that can be readily 

understood and trusted by clinicians. 

Building on these advances, our work 

leverages the OASIS MRI dataset, which 

comprises over 80,000 brain images from 

461 patients, to train an 

EfficientNetV2B0-based model for 

classifying AD progression into four 

distinct stages: non-demented, very mild 

demented, mild demented, and moderate 

demented. Our study not only focuses on 

achieving state-of-the-art classification 

accuracy but also emphasizes the 

integration of XAI techniques—specifically 

Grad-CAM and LIME—to generate visual 

explanations that highlight relevant brain 

regions. These visual outputs aim to 

enhance clinical decision-making by 

providing transparent, interpretable, and 

trustworthy results. Ultimately, our 

approach looks to empower clinicians with 

tools that combine the predictive prowess 

of deep learning with intuitive visual 

explanations, paving the way for more 

reliable early diagnosis of Alzheimer’s 

disease. 

II. METHODOLOGY 

A. Proposed Model  
In this study, we adopt a widely 

recognized deep learning architecture 

EfficientNetV2B0[7] as the backbone for 

our Alzheimer's detection framework. 

Figure 1 depicts our overall methodology. 

The EfficientNetV2B0 model, pre-trained 

on ImageNet[8], is chosen due to its 

balanced trade-off between accuracy and 

computational efficiency. Its established 

performance makes it an ideal base model 

for integrating explainable AI techniques 

such as Grad-CAM and LIME, which are 

critical for providing transparency in 

clinical applications. 

 
Figure 1 Methodology of our study 

The pre-trained EfficientNetV2B0 is 

modified by removing the top classification 

layers and appending a custom 

classification head. This head comprises a 

Global Average Pooling layer, followed by 

two fully connected (dense) layers with 

dropout for regularization. The final dense 

layer outputs a softmax probability 

distribution over the four classes (non-

demented, very mild demented, mild 

demented, and moderate demented). 

The hyperparameters used in our 

model are summarized in Table 1. These 

hyperparameters were selected based on 

preliminary experiments to ensure stable 

performance while maintaining a robust 

baseline model for subsequent XAI 

analysis. It is important to note that the 

primary role of the model training in this 

study is to provide a reliable foundation for 

interpreting predictions via XAI methods 

rather than achieving state-of-the-art 

classification accuracy. 
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Table 1 Hyperparameters of the Proposed Model 

Parameter Value 

Input Shape 128 × 128 × 3 

Base Model EfficientNetV2B0 

(pre-trained on 

ImageNet) 

Dense Layer 1 

Units 

256 

Dropout Rate 1 30% 

Dense Layer 2 

Units 

128 

Dropout Rate 2 25% 

Final Layer 

Activation 

Softmax 

Number of Classes 4 

 

The role of the EfficientNetV2B0-based 

model in our study is to serve as a reliable 

and well-calibrated baseline. After fine-

tuning the model on the OASIS MRI 

dataset (which consists of 80,000 images 

derived from 461 patients), we integrate 

state-of-the-art XAI techniques. These 

methods—such as Grad-CAM and LIME—
are used to generate visual explanations 

that highlight the brain regions influencing 

the model's predictions. Such 

interpretability is essential for clinical 

adoption, as it helps bridge the gap 

between automated analysis and medical 

expertise. 

B. OASIS-1 Dataset and 
Demographics 
This study utilized the OASIS-1 

(Open Access Series of Imaging Studies) 

dataset[9], a publicly available resource 

designed to support research on 

Alzheimer’s disease progression and 

related cognitive impairments. The dataset 

comprises neuroimaging data, including 

MRI scans, along with detailed clinical and 

demographic information, making it an 

invaluable asset for understanding the 

disease through advanced imaging 

techniques. In our study, the OASIS-1 

dataset includes data from 416 subjects. 

Brain MRI scans were processed by slicing 

each 3D volume along the z-axis into 256 

slices, from which 100 to 160 slices per 

patient were randomly selected. This 

approach resulted in an original dataset of 

approximately 86,437 2D images, as 

illustrated in Figure 2 below with there 

labels. However, the dataset is highly 

skewed, with a pronounced predominance 

of non-demented images relative to the 

other classes. To address this imbalance 

and reduce the risk of overfitting, we 

applied a resampling strategy with 5000 

sample size. The resulting balanced class 

distribution is depicted in the pie chart in 

Figure 3, highlighting the efforts to 

mitigate bias and improve the reliability of 

subsequent deep learning analyses. 

 

 
Figure 2 Class distribution before resampling 

 

 

 
Figure 3 Class distribution after resampling 

III. EXPERIMENT RESULT 

A. Training and Results 
This section outlines the training 

process of our EfficientNetV2B0 based 

model, detailing its convergence behavior 

and final performance metrics, which 
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serve as the foundation for our subsequent 

interpretability analyses. To ensure robust 

generalization and mitigate overfitting, we 

implemented an early stopping mechanism 

that monitored the validation loss and 

automatically restored the best model 

weights. 

Training was originally scheduled for up 

to 50 epochs. However, the model’s 

performance on the validation set peaked 

around epoch 8, where it achieved its 

lowest validation loss. After this point, no 

further improvements were observed, and 

the early stopping mechanism was 

triggered at epoch 11. The model then 

automatically reverted to the weights from 

epoch 8, which marked the optimal balance 

between training accuracy and 

generalization. This strategy helped to 

prevent overfitting and ensured efficient 

use of training resources. It's important to 

highlight that loss and accuracy are 

measured differently and do not add up to 

1. Accuracy measures the percentage of 

correct predictions, whereas loss 

quantifies the prediction error — lower 

loss does not always directly correlate 

with higher accuracy and vice versa. 
Table 2 Performance Metric 

Training Accuracy 0.9938 

Validation Accuracy 0.9958 

Training Loss 0.0192 

Validation Loss 0.0178 

The metrics in Table 2 above show that 

the model reached over 99% accuracy on 

both the training and validation datasets, 

with very low loss values, suggesting 

effective learning and strong 

generalization to unseen data. 

Figures 4 and 5 illustrate the evolution 

of the training process. In Figure 3, the 

training accuracy increases steeply in the 

initial epochs and approaches near-

perfect performance, while the validation 

accuracy closely follows, suggesting 

effective learning without significant 

overfitting. Figure 2 shows a 

corresponding sharp decrease in training 

loss, with the validation loss decreasing in 

parallel during the early epochs. The slight 

increase in validation loss beyond epoch 8 

further justifies the early stopping 

strategy. 

 

 
Figure 4 Training and Validation Accuracy 

 
Figure 5 Training and Validation Loss 

 

Overall, the training process 

demonstrates that our chosen architecture, 

along with the carefully tuned 

hyperparameters and early stopping, 

provides a robust and reliable model for 

Alzheimer’s disease classification. This 

strong baseline is essential for the 

subsequent integration of explainable AI 

techniques, such as Grad-CAM and LIME, 

which will offer transparent visualizations 

to support clinical decision-making. 

B. Comparative Visual Results: 
Figures 6 and 7 illustrate the difference 

in visual explanations generated by Grad-
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CAM and LIME for MRI slices of patients 

at varying stages of Alzheimer’s disease. 

Both techniques highlight high-confidence 

regions in the image; however, their 

underlying mechanisms and resulting 

overlays differ significantly. 

1. High-Confidence Activation 
Thresholds 
Grad-CAM: A gradient-based method 

that computes importance weights for 

each neuron in the last convolutional layer. 

The final heatmap is thresholded at the top 

1% (or a similarly high percentile) of 

activation values, ensuring that only the 

most influential pixels are shown. 

LIME: A perturbation-based, local 

explanation approach that identifies 

superpixels whose removal or alteration 

most affects the model’s prediction. In this 

study, the top 4% (96th percentile) of 

superpixels by importance score were 

selected, highlighting the most critical 

regions for the model’s decision. 

 

 
Figure 6 Grad-cam visualization 

 

 
Figure 7 Lime Visualization 

 
2. Overlay Observations 
Grad-CAM Overlay (Figure 6): Focuses 

on a compact, gradient-driven “area of 

interest,” typically around anatomically 

salient regions associated with the model’s 

classification. This approach provides a 

global view of where the network’s highest 

gradient activations lie, often localizing a 

tight cluster that corresponds to key 

features for the predicted label. 

LIME Overlay (Figure 7): Produces a 

superpixel-based mask that zeroes in on 

multiple sub-regions the model relies 

upon. Because LIME creates explanations 

by locally perturbing the input, its overlay 

can appear more fragmented, emphasizing 

specific patches that have the greatest 

local influence on the model’s output. 

3. Correct vs. Misclassified 
Instances 
In one example, LIME is shown on an 

instance misclassified by the network 

(“True: 3, Pred: 1”). Here, LIME’s overlay 

reveals which superpixels led the model 

toward an incorrect conclusion where we 

can see the eye. 

Grad-CAM, in contrast, is demonstrated 

on a correctly classified instance (“True 

label: 3, Pred label: 3”). Its heatmap 

pinpoints a distinct bright region that 

strongly influenced the correct prediction. 

4. Clinical Implications 

Interpretability: Grad-CAM’s single 

heatmap can be quickly interpreted by 

clinicians as a focal “hotspot,” while LIME’s 

superpixel-based explanation offers 

finer-grained, local insights. Grad-CAM 

may be preferred for a fast, high-level 

check of whether the network focuses on 

disease-relevant structures, whereas 

LIME is beneficial for dissecting the 

model’s behavior on difficult or 

misclassified cases. 

Overall, these methods increase the 

interpretability and trust, enabling 

clinicians to gain a clearer understanding 

of why the network arrives at a given 

decision—particularly crucial in the high-
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stakes context of Alzheimer’s disease 

diagnosis. 

C. Experiment Environment  
Experiments were conducted on a 

Windows 10 machine running Python 

3.9.13 using Visual Studio with the Python 

Notebook extension (IPvKernel). The 

system featured two NVIDIA Quadro 

P4000 GPUs (4GB each) and 64 GB of 

RAM (four 16GB Samsung modules at 

2666 MHz). We primarily used 

TensorFlow/Keras for deep learning, 

along with libraries such as scikit-learn, 

OpenCV, and nibabel to ensure 

reproducibility. 

IV. Discussion and Conclusion 

Our study demonstrates that integrating 

explainable AI methods—Grad-CAM and 

LIME—with a fine-tuned 

EfficientNetV2B0-based model on the 

OASIS-1 dataset produces both high 

diagnostic accuracy and clinically 

meaningful visual explanations. The model 

quickly achieved near-optimal 

performance, and the generated heatmaps 

reliably highlight brain regions known to 

be affected by Alzheimer’s, thereby 

enhancing the interpretability of the 

predictions. These findings are consistent 

with recent literature emphasizing the 

need for transparency in AI-driven 

medical diagnostics[10], [11], [12]. 

Overall, our framework provides a robust 

foundation for early Alzheimer’s detection 

and that can offer valuable insights for 

clinical decision-making. Future work will 

explore multimodal imaging and additional 

XAI techniques to further improve 

diagnostic reliability. 
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