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(A Multi-feature-based Sequential Refinement Model for Korean Emotion Recognition)
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Abstract

As the importance of understanding complex emotions in human - computer interaction (HCI) has
grown, research on multimodal emotion recognition has become increasingly active. Recently,
diverse modalities have been leveraged to recognize nuanced human emotions. However, prior
studies have limitations in sufficiently capturing inter-modal interactions that arise in
Korean-specific, compound emotional expressions. To address this gap, we propose a sequential
refinement-based multimodal fusion model that integrates text, speech, and jamo (Korean
grapheme) information. Specifically, we extract modality-specific representations using
KLUE-BERT, HuBERT, and a jamo-based Transformer encoder, and then sequentially refine and
fuse these features via cross—modal attention. Subsequently, we apply Conformer blocks and
attention pooling to derive salient expressive cues. The proposed model achieves an accuracy of
0.8462, demonstrating that precisely modeling cross—-modal correlations can meaningfully improve

Korean emotion recognition performance.
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