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(Food Image Classification and BMR-Aware Diet Recommendation System Based on Swin—V2)
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Abstract

In modern diets, increasing consumption of ultra-processed and high-calorie foods is accelerating
obesity and metabolic disorders, highlighting the need for technologies that automatically record and
manage food types and nutritional intake. This study proposes a mobile application architecture that
integrates a Swin-V2-based deep learning model for food image classification with a basal metabolic
rate (BMR)-based meal recommendation module. Experiments use 10,000 images from 10 frequently
consumed classes selected from the 101-class Food-101 dataset, with the limitation that computational
and time constraints prevented evaluation on all classes. The proposed Swin-V2-Tiny model,
fine-tuned from ImageNet pre-trained weights, achieves a Top-1 accuracy of 0.926 and a macro
F1-Score of 0.926, outperforming Swin-V1 and several CNN-based baselines. The prototype system
shows that automatic food recognition and diet recommendation can be effectively combined, and future
work will extend the dataset, incorporate portion-size estimation, and apply model compression to build
an integrated diet-management system suitable for real-world services.
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