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Abstract 

The k-ary n-cube   
  is widely used in the design and implementation of parallel and distributed processing 

architectures. It consists of    identical nodes, each node having degree    is connected through 

bidirectional, point-to-point communication channels to different neighbors. On   
  we would like to transmit 

   packets from a source node to    destination nodes simultaneously along paths on this network, the     

packet will be transmitted along the     path, where         . In order for all packets to arrive at a 

destination node quickly and securely, we present an O(  ) routing algorithm on   
  for generating a set of 

one-to-many node-disjoint and nearly shortest paths, where each path is either shortest or nearly shortest 

and the total length of these paths is nearly minimum since the path is mainly determined by employing the 

Hungarian method. 
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I. INTRODUCTION 

 

The k-ary n-cube   
  [1,7,8,9] consists of 

   identical processors (nodes). Each 

processor, provided with its own sizable local 

memory, is connected through bidirectional, 

point-to-point communication channels to    

different neighbors. Due to these properties, 

  
  can be widely used in the design and 

implementation of parallel and distributed 

processing architectures. 

In this paper, nearly optimal one-to-many 

parallel routing algorithm on the k-ary 

n-cubes is designed.    packets are 

transmitted from a source node to    

destination nodes simultaneously along paths 

on   
 , the   ℎ packet will be transmitted along 

the   ℎ path (      ). In order for all packets 

to arrive at their destination nodes quickly and 

securely, a set of    node-disjoint paths with 

nearly minimal total length should be 

constructed. To accomplish this, the operations 

of nodes presented in the Cayley Graph[6], the 

MGNDP (Matrix for generating node-disjoint 

paths) and the Hungarian method are emplyed 

[2,5]. 

This paper is organized as follows. Section II 

describes the design of the shortest path on   
 . 

Section III is the central contribution of this 

paper. This section focuses on Hungarian 

method and its application is to a parallel routing 

algorithm on   
 . This paper concludes with 

Section IV.  

 

II. DESIGN OF THE SHORTEST PATH 

 

The k-ary n-cube   
      and      is a 

graph consisting of    nodes, each of which 

has the form                   or   

                and    is defined as the set of 

nonnegative integers less than n where 

              for     . Two nodes 

                  and                   on 

  
  are adjacent if and only if there exists an 

integer  ,     , such that        (mod k) 

and      , for every                    . 

Such a link       is called a  -dimensional link 
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Definition 1. * The routing function of   
  on 

the   ℎ dimension is defined as follows: 

    
         (mod k),           where 

    is the positive operation on the   ℎ 

dimension. 

 

In this paper, we use     and    

interchangeably. Employing positive operations 

-    and    on   
 , (010) is connected to 

      and      , respectively. (010) is 

connected to       and       employing 

negative operations -     and    , 

respectively. 

 

Definition 2. Let        be the path of data 

starting from node   to the destination node, 

where   is a sequence of operations, via which 

data can reach at a destination node.        is 

determined by the order of operations in  . 

 

 Let node   and sequence   be (233) and 

                                on   
    

respectively. Applying the routing function 

described in Definition 1,        is       

                                    

           . In this paper, the order of 

operations defined as follows -    is higher 

than   , if    . In this example, the order of 

operations is from the first operation to the 

lowest. The size of this sequence must be 

minimized since a routing distance is equal to 

the size of a sequence and   is minimized to 

                   because 

                       and the routing 

distance is 5. To obtain the minimized routing 

distance between two nodes, the relative 

address is computed below. 

 

Definition 3. The relative address   of nodes 

  and   on   
  is denoted by       

               , where if          then 

       , else if           then         

(mod k). 

 

Let   and   on   
  be (234) and (410). The 

relative address   of two nodes is (2-21), 

which can be described as a sequence S of 

operations                   . 

 

 

III. A ONE-TO-MANY PARALLEL 

ROUTING ALOGITHM ON   
  

 

In this section, we would like to construct a set 

of    node-disjoint and nearly shortest paths 

on   
  in order to transmit    packets securely 

and quickly. First, these packets residing at a 

starting node are sent to its    neighboring 

nodes by employing    different operations. 

Then these packets are transmitted to    

destination nodes along    node-disjoint paths, 

where the   ℎ packet is transmitted to the   ℎ 

destination node. 

The MGNDP(Matrix for generating 

node-disjoint paths)[4] is applied to find a set 

of node-disjoint paths on hypercube networks. 

The next definition describes the MGNDP. 

 

Definition 4: Call the matrix   as the 

MGNDP(Matrix for generating node-disjoint 

paths). No two entries in this matrix thus 

satisfy the following conditions. 

                                    

 
 

 
                 means "stay at the 

current node”. 

(1)             

(2)                              

(3)                  

 

In order to design a nearly optimal 

one-to-many parallel routing algorithm the 

Hungarian method is applied, which is a 

combinatorial optimization algorithm solving the 

assignment problem in polynomial time      . 

In this paper, this method models an assignment 

problem as an         communication cost 

matrix, each element of which represents the 

cost of transmitting a packet from one node to 

another node. Here, communication cost means 

the distance between two nodes on   
 . 

 

We now transmit six packets from node       

to nodes                               and 

      on   
 . First, these packets are sent to 

node      ’s   neighboring nodes by 

employing six distinct operations - 

                     and then reach at nodes 

                              and      . To 

find a set of six node-disjoint and nearly 
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shortest paths from these intermediate nodes to 

six destination nodes, the assignment problem 

will be employed. A       communication cost 

matrix    is constructed by computing a 

shortest distance from a neighboring node to a 

destination node, where        
  . By 

employing the Hungarian method to   ,    is 

generated. 

 

   

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

 

   

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

 

 

For example,    
  = 4 means that the distance 

of the path from the   ℎ neighboring node to the 

    destination node is 4. The relative address 

of these nodes is        and the sequence of 

operations is               . So, the path is 

"node (014)   node (114)   node (214)   

node (224)   node (223)". From    we 

select the zeroes from column numbers 

1,2,3,4,5 and 6, respectively. This means that 

packets are transmitted from nodes 

                              and       to 

nodes                               and      , 

respectively. To reach from node (010) to the 

destination nodes, operations should be 

performed. The first and remaining operations 

for path 0, path 1, path 2, path 3, path 4 and path 

5 are                        ,  

                   ,  

                     ,  

                    ,  

                         , and  

                         , respectively. 

If the first operation is   , then the next 

operation is from    to the lowest and then 

from the highest to   . 

To be a set of disjoint paths, the two 

exceptional cases should be solved. For the 

first case, any two sequences of operations 

satisfy the conditions described in Definition 4. 

Depending on which operation is performed at 

last, the collision of two paths may happen. So, 

the last operation in each sequence should be 

chosen carefully. These operations not to be 

selected for Path 0, Path 1, Path 2, Path 3, Path 

4 and Path 5 are                    ,     ,      , 

    ,      and      , respectively. If     is 

chosen for Path 0, then Path 0 and Path 1 collide 

at node (234). However, any operation in the 

sequence for Path 0 can not be selected as the 

last operation. To be the suitable sequence for 

path 0,           is changed to            

since                        and      

          is the same as                 on 

  
 . So, the sequence for Path 0 should be 

                        . For the second 

case, Path 2 and Path 3 collide at node (013) 

since                                on 

  
 . To avoid this collision one    moves to the 

last position in the second sequence. The 

sequence for Path 2 should be       

               . So, the MGNDP M is 

constructed as follows. 

 

[
 
 
 
 
 
                                               

                                              
                                              
                                                   
                                                         
                                                         ]

 
 
 
 
 

 

 

Given            of operations, a set of 

node-disjoint and nearly shortest paths is 

generated as below. 

Path 0: node (010) → node (110) → node (210) → 

node (220) → node (230) → node (231) → node 

(232) → node (233).  

Path 1: node (010) → node (020) → node (030) → 

node (034) → node (134) → node (234).  

Path 2: node (010) → node (011) → node (012) → 

node (112) → node (212) → node (222) → node 

(223).  

Path 3: node (010) → node (014) → node (013) → 

node (113) → node (123) → node (133).  

Path 4: node (010) → node (000) → node (040) → 

node (140) → node (240) → node (244) → node 

(243).  

Path 5: node (010) → node (410) → node (310) → 

node (320) → node (330) → node (334) → node 

(333). 

Smart Media Journal / Vol.7, No.2 / ISSN:2287-1322 2018년 06월 스마트미디어저널                11



The process to find a set of node-disjoint and 

nearly shortest paths is described above. We 

now propose a one-to-many parallel routing 

algorithm on   
 . In this paper, we will use the 

term "distance" between two nodes to refer to 

the number of routing steps (also called the 

hopcount) needed to send a message from one 

node to another. 

                 

    a starting node  

     the   ℎ  neighboring node of node   

          

     the   ℎ destination node           

begin 

(1)    packets are sent from   to their    

neighboring nodes by performing    

distinct operations 

(2) A         communication cost matrix 

  can be constructed, where        , 

    is the shortest distance of the path 

required for transmitting the   ℎ  packet 

from the   ℎ neighboring node to the   ℎ 

destination node 

(3) In order to design nearly shortest paths, 

the Hungarian method is applied to the 

communication cost matrix. From the cost 

matrix computed, we obtain the length of 

Path   between    to a destination node, 

which is the number of operations in the 

sequence, the order of which is from    

to the lowest and then from the highest to 

  , where           is the path from   

to   . 

(4) The two exceptional cases should be 

solved. 

(4-1) Find operations not to be selected as 

the last operation for each path. In order for 

each sequence to satisfy the conditions 

described in Definition 4, change the last 

operation in the sequence, if needed. 

(4-2) If         s in a sequence exist, then 

one    moves to last position in the sequence. 

(5)    packets are transmitted from a 

starting node to    destination nodes via 

the corresponding neighboring nodes by 

performing    sequences of operations 

end 

Execution of                 is thus 

fairly straightforward. The time involved in 

performing Steps (1), (4-2) and (5) is small 

compared to the remaining steps. The first, the 

second, and the sixth steps of this algorithm do 

not, therefore, contribute to an objectionable 

overhead. 

Theorem 1.                  can be 

performed in      . 

Proof. There are three important steps for 

determining the time complexity requisite for 

the Algorithm. Step (2) constructs a 

communication cost matrix, which requires 

     . Step (3) executes the Hungarian method, 

which can be computed in      . Step (4-1) 

finds operations not to be selected as the last 

operation for each path. It needs      . 

Therefore, the time complexity of the 

Algorithm is      . 

The paper’s objective is to design a set of    

node-disjoint paths from a single source node 

to    destination nodes. The major topological 

characteristics of   
  are considered and the 

requisite properties of    paths obtained from 

the Algorithm are proven below. 

Theorem 2.  The    transmission paths 

produced by                 are 

node-disjoint and nearly shortest. 

Proof. Let    and    be two sequences of 

operations for sending two packets from a 

starting node A to two destination nodes, where 

                                         

                                      . Let     

and     be two sequences of operations not to 

be selected as the last operation, where 

                              

                   , respectively. Each sequence 

is ordered from the first operation to the lowest 

and then from the highest to the first. Suppose 

that two packets arrive at the same node. In 

order for this case to occur, we should have the 

equality that                  , where   is a 

starting node,     and     are the 

subsequences of    and   , 

                                   

                                 . However, 

these sequences do not appear. To prove it, we 

consider three cases. 

Case 1: If       and            appear in 

the beginning part of     and    , respectively, 

then                      . However, this 

case does not happen. According to Algorithm 

(4-2), one    moves to the last position of the 
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corresponding sequence. 

Case 2: Suppose that          . Then 

                since two destination nodes 

are different. These paths must be 

node-disjoint because an operation in each 

sequence is performed in the same way - from 

the first operation to the lowest and then from 

the highest to the first operation. 

Case 3: Suppose that                 . In 

order for this case to happen,     should be 

                                 However, this 

case does not occur. In case of          ,     

should be relocated or replaced. 

 Swaps         in   ,    , which deserve to 

be the last position (see Algorithm (4-1)). 

The total length of these paths is minimal at 

most cases since the number of operations is 

obtained by employing the Hungarian method. 

However, depending on selecting which 

elements in the modified cost matrix(see    in 

Section 3), two arbitrary paths may cross at the 

same node. It causes these paths not to be 

node-disjoint. So, one of these paths should be 

detoured to avoid this occurrence, which makes 

the total length of them longer. Therefore, the 

Algorithm constructs a set of    node-disjoint 

and nearly shortest paths. 

 

IV. CONCLUSION 

 

In this paper, an algorithm that generates a set 

of    nearly shortest and node-disjoint paths 

on   
  from a source node to    destination 

nodes employing the Hungarian method is 

presented. Three important steps determine 

the time complexity requisite for the Algorithm. 

The first constructs a communication cost 

matrix, which requires      . The second is to 

execute the Hungarian method, which can be 

computed in      . The final designs a set of 

   node-disjoint paths, which requires      . 

Therefore, an       parallel routing algorithm 

is created for constructing a set of    

node-disjoint and nearly shortest paths. For 

further research, this algorithm will be 

extended to design a set of one-to-many 

node-disjoint paths on other networks and on 

fault-tolerant   
 . 
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