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Abstract 

In recent research, deep learning-based methods have achieved state-of-the-art performance in various 

computer vision tasks. However, these methods are commonly supervised, and require huge amounts of 

annotated data to train. Acquisition of data is an additional costly effort, particularly for the tasks where it 

becomes challenging to obtain large amounts of data considering the time constraints and the requirement of 

professional human diligence. In this paper, we present a data level synthetic sampling solution to learn from 

small and imbalanced data sets using Generative Adversarial Networks (GANs). The reason for using GANs 

are the challenges posed in various fields to manage with the small datasets and fluctuating amounts of 

samples per class. As a result, we present an approach that can improve learning with respect to data 

distributions, reducing the partiality introduced by class imbalance and hence shifting the classification 

decision boundary towards more accurate results. Our novel method is demonstrated on a small dataset of 

2789 tomato plant disease images, highly corrupted with class imbalance in 9 disease categories. Moreover, 

we evaluate our results in terms of different metrics and compare the quality of these results for distinct 

classes. 
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 INTRODUCTION 

 

Deep learning [1] based methods have 

consistently shown improvements in the 

state-of-the-art every year, and for many 

computer vision tasks they even surpassed 

human performance [2]. Learning from small 

and imbalanced data sets is a new challenge for 

several deep learning applications today. To 

circumvent these costs and train on smaller 

datasets, methods like transfer learning, domain 

adaptation [3] and data augmentation [4] have 

been followed. While transfer learning and 

domain adaptation are prevalent, they are not as 

easily appropriate for tasks where no large 

public datasets or pre-trained network 

parameters of a close domain are available, e.g. 

in disease detection and classification in plants 

and medical images. For this reason, we 

concentrate on data augmentation to deal with 

small amounts of data, specifically data 

augmentation using images synthesized from a 

generative model. Data augmentation is 

commonly used to synthetically generate 

additional training data. A major shortcoming 

with the standard data augmentation methods is 

that they require knowledge of the underlying 

task to perform well and introduce additional 

hyperparameters into the deep learning setup. 

With the goal to alleviate these issues, we 

assess a data augmentation strategy using 
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Generative Adversarial Networks (GANs). 

While GANs have shown potential for image 

synthesis in many fields when trained on large 

datasets, their potential given small datasets 

particularly from the agricultural domain has not 

been analyzed yet. We want to evaluate if GAN 

based data augmentation using 

state-of-the-art methods, such as the 

Image-to-image translation using GANs, is a 

practicable strategy for small datasets. 

Imbalanced learning arises when some types 

of data distribution significantly dominates the 

instance space compared to other data 

distributions. Lately, theoretical study and 

applied applications for this problem have 

fascinated a growing concern and attention from 

both industry as well as academia [5,6,7]. An 

example of one such applications is in the role 

of deep learning manipulation of plant disease 

detection and classification algorithms. The 

data samples for various kinds of diseases are 

normally very limited compared to normal cases; 

therefore, the ratio of the minority class to 

majority class can be substantial. On the other 

hand, it is significantly important to predict the 

presence of diseases, or further classify 

diverse types of diseases as accurately as 

possible for proper treatment at an early stage 

We test the algorithm on our tomato plant 

disease data set summarized in Figure 1. The 

images used for our analysis are collected in 

different farms, under different conditions. 

Collecting plant disease data is a complex and 

expensive procedure that requires the 

collaboration of people from different fields and 

at contrasting stages. Researchers often 

encounter the challenge of imbalance in classes 

which has been a universal problem in machine 

learning and computer vision. An efficient way 

to synthesize images and supplement training 

set may help boost accuracy in various fields. 

Using data augmentation techniques for 

enlarging training set and class balancing has 

been reported in various literatures [7,27,28].  

However, the diversity and variation that can be 

achieved from small modifications of the images 

(such as translation, rotation, flip and scale) is 

relatively minor. This motivates the use of 

synthetic data examples where the generated 

samples enable the introduction of more 

diversity and can possibly supplement the 

dataset further, to improve the training process 

and accuracy.  

It has been shown that by rendering 

photorealistic synthetic images and performing 

a set of transformations on those rendered 

images, they can be used to train an object 

detector with good performance [8]. Similarly, 

in the medical domain, it has been shown that by 

training a deep neural network on high-quality 

rendered 3D images from other computer vision 

tasks and fine-tuning it towards medical data, 

the over-all network performance can be 

improved when data is scarce [9]. This shows 

that data augmentation by using a generative 

model can be used to improve the training of 

deep learning methods. 

Recently introduced by Goodfellow et al., 

Generative Adversarial Networks (GANs) 

deliver a striking method of learning a 

generative model by training a deep neural 

network [10]. GANs have demonstrated 

potential in tasks such as state-of-the-art 

image generation [11], or synthetic data 

generation and translation [12], [13]. The idea 

of using GANs in the setting of data 

augmentation has also seen some progresses in 

research [12]. The main conception in [12] is to 

render synthetic images with matching labels 

and refine those synthetic images. This GAN 

uses the statistics from real, unlabeled images 

of the same domain while preserving the label 

information of the rendered images to produce 

realistic, refined images, which can further be 

used as training data for a supervised deep 

learning network. However, while GANs have 

shown remarkable results when trained on large 

datasets, it is still a topic of active research how 

GANs act when trained on a small amount of 

data, as most GAN-related research 

emphasizes the use of large datasets. 

One of the advantages of Deep Learning is its 

ability to manipulate the raw data directly 

without using hand-crafted features.   

Recently, Deep Learning delivered exclusive 

results in automatic quantification and 

recognition of plant diseases based on image 

processing methods and techniques. The 

success of Deep learning is mainly related to the 

access to huge amounts of data for training a 



deep model and high computing power provided 

by Graphics Processing Units (GPUs) which 

make it possible to train these deep models and 

impose the parallelism of data computing 

In the current work we use deep learning 

methodology where we focus on the task of 

synthetic plant disease generation using GAN 

as a data augmentation technique. We 

synthesize plant disease samples of the 

minority class from a finite number of raw 

images using GANs which can be used further 

for augmentation and class balancing of the 

training set for any related computer vision task. 

The remainder of this paper is ordered as 

following. Section II presents the related works 

in the field of generative adversarial networks. 

In section III we discuss the image synthesis 

and augmentation technique including the 

architecture for the generative model. In 

section IV, we evaluate the performance of the 

technique using various metrics. Finally, a 

conclusion is presented in Section V. 

 

Fig. 1.  A representation of diseases and 

pests that effect tomato plants. (a) Canker, 

(b) Gray mold, (c) Leaf mold, (d) Low 

temperature, (e) Miner Canker, (f) Nutritional 

excess or deficiency, (g) Plague, (h) 

Powdery mildew, (i) Whitefly. The images are 

collected under different variations and 

environmental circumstances. 

 

 RELATED WORK 

 

A. Data Balancing and Data Augmentation 

Data balancing in deep learning applications 

like plant diseases classification is a critical area 

that has been studied and surveyed through the 

years and is driven by the necessity of a healthy 

agricultural output. However, some essential 

elements to be considered are 

cost-effectiveness, user-friendliness, 

accuracy, and sensitivity. Model performance 

for tasks like classification, detection and 

recognition of these diseases can be improved 

using data augmentation which can overcome 

the problem of inadequate data and imbalanced 

distribution. Experiment from the studies in [15] 

found out that most of the learning algorithms 

are designed around the notion that training sets 

are well balanced in distribution, which most of 

the time is not correct. The authors in [15] went 

to prove that in the case of feed-forward neural 

networks, class imbalance does hinder its 

performance especially when the class 

complexity increases. However, it is an 

unsolved problem of how to generate (sample) 

data from the ‘true distribution’ of given 

limited training data such that generated 

samples are used to eliminate the existence of 

class imbalance in our dataset.   

Data augmentation is the process of generating 

additional training data from the available 

existing data [3]. Typically, this is done by 

using annotation-preserving transformations on 

the input data, such as randomly rotating, 

deforming or translating the image. Through the 

random nature of data augmentation, it can be 

used to potentially generate an ‘ infinite ’ 

amount of training data by augmenting the 

existing data. For medical image analysis, data 

augmentation such as elastic deformation has 

been used with much success in combination 

with convolutional neural networks for medical 

image segmentation [8]. Although data 

augmentation is an effective way of dealing with 

the issue of small amounts of training data, it is 

not universally applicable, as prior information 

of target domain and task is essential to find a 

good data augmentation technique. Furthermore, 

the parametrization of data augmentation 

methods introduces additional set of vital 

hyperparameters, which can have a significant 



impact on the error made by the deep learning 

method. 

 

Fig. 2.  (a) General structure of a 

Generative Adversarial Network. The 

generator G takes a noise vector z as input 

and output a synthetic sample G(z), and 

the discriminator takes both the true sample 

x and synthetic input G(z) as inputs and 

predicts whether they are real or fake. (b) 

CycleGAN Framework. A and B are two 

dissimilar domains. Two generators 

translate an image from one domain to 

another. A a discriminator for each domain 

judges if an image belongs to that domain. 

The two cycles of data flow are shown, the 

green one (dashed) performs a sequence 

of domain transfer A  B  A, while the 

blue one (dotted) is B  A  B. L1 loss is 

functional on input a (or b) and the 

reconstructed input 𝐺𝐵𝐴 (𝐺𝐴𝐵(𝑎))(or 

𝐺𝐴𝐵 (𝐺𝐵𝐴(𝑏))) to impose self-consistency. 

 

B. Generative Adversarial Networks 

Generative Adversarial Networks (GANs) [10] 

are a promising approach for training a model 

that can synthesize images. GAN models have 

generated better synthetic images than previous 

generative models, and since have become one 

of the most prevalent research areas. GANs 

have achieved great acceptance in the computer 

vision community and different variations of 

GANs recently proposed have produced high 

quality realistic natural images [11].  

As shown in Figure 2(a) Generative 

Adversarial Net (GAN) [10] consists of two 

separate neural networks: a generator 𝐺  that 

takes a random noise vector z and further 

generates synthetic data 𝐺(𝑧); a discriminator 

D that takes an input 𝑥  or 𝐺(𝑧)  to output a 

probability 𝐷(𝑥)  or 𝐷(𝐺(𝑧))  and indicate 

whether the input is derived from the synthetic 

distribution 𝐺(𝑧)  or from the true data 

distribution, as depicted in Figure 2. The first 

GAN [10] proposed, uses fully connected layer 

as its building block. Later, DCGAN [22] 

effectively demonstrated the use of fully 

convolutional neural networks achieves better 

performance, and since convolution and 

transposed convolution layers [23] have 

become fundamental components in many GAN 

models. The novel process of training  the 

generator and discriminator is by arranging a 

two-player min-max game between the 

generator and the discriminator, where the 

generator 𝐺  tries to generate reasonably 

realistic data representations to fool the 

discriminator while the discriminator 𝐷 tries to 

differentiate between real and synthetic data 

[10]. The value function thus formulated is 

optimized as follows: 

 

𝒎𝒊𝒏
𝑮

 𝒎𝒂𝒙
𝑫

 𝑽(𝑫, 𝑮)

=  𝔼𝒙~𝒑𝒅(𝒙)
[𝒍𝒐𝒈 𝑫(𝒙)]  

+ 𝔼𝒛~𝒑𝒛(𝒛)
[𝒍𝒐𝒈(𝟏 − 𝑫(𝑮(𝒛)))]  

(1) 

where 𝑝𝑑(𝑥) denotes true data distribution and 

𝑝𝑧(𝑧)  denote the noise distribution. Once the 

discriminator is trained much better than the 

generator, it can reject the samples from 

generator with a high confidence (i.e. close to 1), 

and thus the loss  𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))  would 

saturate and hence 𝐺 would not learn anything 

from zero gradient. To prevent this, instead of 

training 𝐺 to minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) , we 

train it to maximize 𝑙𝑜𝑔 𝐷(𝐺(𝑥))  [9]. 

Furthermore, this new loss function for 𝐺 

provides the same direction of gradient and does 

not saturate. 

Lately, numerous applications have applied the 

GAN into their framework e.g. in medical 

imaging [16,17] however, the application in 

plant disease imaging remains unexplored. Most 

studies have employed the image - to - image 

translation techniques to create 

label-to-segmentation translation [18,19,20], 

segmentation-to-image translation or cross 

modality translations [21]. Some studies have 



been encouraged by the GAN method for image 

inpainting. In this research, built on Generative 

Adversarial Networks (GANs) for 

image-to-image translation, we suggest a 

method for data augmentation to generate new 

samples via adversarial training, to increase the 

data manifold for the estimate of the ‘true 

distribution’ that may lead to better margins 

between distinct categories of data. 

In all the above approaches including the other 

approaches for various tasks in deep learning in 

computer vision so far, the availability of huge 

amount of data plays a crucial role for improved 

classification accuracy. Through the procedure 

given in this work, we can achieve an equivalent 

performance by starting with small number of 

original images and gradually generating more 

plant disease images synthetically using 

Generative Adversarial Networks (GANs) and 

feeding those samples to our training set. 

 

 METHOD 

 

When using deep convolutional networks with 

several layers or dealing with insufficient 

number of training samples, we always observe 

a chance of overfitting. Also, the problem of 

imbalanced data is frequently associated with 

misclassification, where the minority class 

tends to be falsely classified as compared to the 

majority class. Problem arises when data of 

minority classes contain valuable information 

and hence become the focus of attention. Such 

errors in classification lead to errors in 

decision-making specifically in prediction 

accuracy of minority class.  The standard 

solution to reduce overfitting and 

misclassification is data augmentation that 

artificially enlarges and balances the dataset and 

improves the classification results. We augment 

our data in two ways: 1) Classical processes or 

combination of processes, such as random 

rotation, shifts, shear and flips, etc. 2) 

Generating samples learned from the existing 

data using generative modelling. We describe 

our method of generating synthetic images of 

tomato plant diseases using Generative 

Adversarial Networks (GANs). We start with an 

overview of this techniques applied to our 

dataset. 

Driven by the success of Generative 

Adversarial Networks (GANs) in image 

generation [10,22,36], existing unsupervised 

mapping methods such as CycleGAN [20] learn 

a generator which produces images in one 

domain given images from the other. Without the 

use of pairing information, there can be many 

possible mappings that could be inferred. To 

reduce the space of the possible mappings, 

these models are typically trained with a 

cycle-consistency constraint which imposes a 

strong connection across domains, by 

necessitating the mapping of image from the 

source domain to the target domain and back to 

the source will result in the same image that we 

started with. This framework has been shown to 

learn substantial mappings across image 

domains and proved effective in a variety of 

related applications [24,25,26]. 

Our GAN network architecture is based on 

CycleGAN [20] using both adversarial loss and 

cycle-consistency loss [20] to generate fake 

tomato plant disease images. Given two domains 

A and B, we assume there exists a mapping 

between their elements, possibly 

many-to-many. The objective is to unveil 

these mappings using unpaired samples from 

each domain distributions 𝑝𝑑(𝑎)  and 𝑝𝑑(𝑏) . 

This can be demonstrated as a conditional 

generative modeling problem where we try to 

approximate the true conditionals 𝑝(𝑎|𝑏)  and 

𝑝(𝑏|𝑎)  while using samples from the true 

marginals. A significant postulation that can be 

drawn here is that elements in domains A and B 

are highly correlated; otherwise, it would be 

questionable that the model would uncover any 

meaningful relationship without any pairing 

information.  

Such a model approximates these conditionals 

using two mappings GAB: A → B and GBA: B → 

A, parameterized by deep convolutional 

networks, which satisfy the following 

constraints: a) The output of each mapping 

matches the empirical distribution of target 

domain, when focused over the source domain. 

This is represented as a marginal matching 

process. b) Mapping elements from one domain 

to the other, and then back, should yield a 

sample close to the element that we started with 

initially, thus exhibiting cyclic-consistency. 



The first constraint is satisfied using the 

generative adversarial networks framework 

(GAN) (Goodfellow et al., 2014). Mappings GAB 

and GBA are given by deep networks trained to 

fool adversarial discriminators DB and DA, 

respectively. Applying this matching on target 

domain B, marginalized over source domain A, 

involves minimizing an adversarial objective 

with respect to GAB: 

 

ℒ𝐺𝐴𝑁
𝐵   (𝐺𝐴𝐵 , 𝐷𝐵)

=  𝔼𝑏~𝑝𝑑(𝑏)
[𝑙𝑜𝑔 𝐷𝐵(𝑏)

+ 𝔼𝑎~𝑝𝑑(𝑎)
[𝑙𝑜𝑔(1 − 𝐷𝐴(𝐺𝐴𝐵(𝑎)))]  

(2) 

as the discriminator DB trains to maximize it. A 

parallel adversarial ℒ𝐺𝐴𝑁
𝐴   (𝐺𝐵𝐴, 𝐷𝐴) is fixed for 

marginal matching in the opposite direction. 

Cycle-consistency imposes the objective 

where initializing with a sample a from A, the 

reconstructed a ’  = GBA (GAB(a)) remains 

close to the original a. Closeness between a and 

a’ is typically measured with L1 or L2 norms. 

When using the L1 norm, cycle-consistency 

starting from A, it can be formulated as: 

 
ℒ𝐶𝑌𝐶

𝐵   (𝐺𝐴𝐵 , 𝐺𝐵𝐴)

= 𝔼𝑎~𝑝𝑑(𝑎)
  ⃦   𝐺𝐵𝐴(𝐺𝐴𝐵(𝑎)) − 𝑎    ⃦ 

(3) 

And similarly, for cycle-consistency starting 

from B. The full objective is given by: 

 

ℒ𝐺𝐴𝑁
𝐴   (𝐺𝐵𝐴, 𝐺𝐴𝐵) + ℒ𝐺𝐴𝑁

𝐵   (𝐺𝐴𝐵 , 𝐷𝐵)

+ 𝛼ℒ𝐶𝑌𝐶
𝐴   (𝐺𝐴𝐵 , 𝐺𝐵𝐴)

+ 𝛼 ℒ𝐶𝑌𝐶
𝐵   (𝐺𝐴𝐵 , 𝐺𝐵𝐴)  

(4) 

where α  is a hyper-parameter to stabilize 

marginal matching and cycle-consistency. The 

success of CycleGAN [20] can be attributed to 

the complementary roles of cycle-consistency 

and marginal matching constraints in its 

objective. Marginal matching incites the 

generation of realistic samples in either domain. 

Cycle-consistency encourages a robust 

relationship between these domains. It also 

helps to prevent multiple items from one domain 

map to a single item from another domain, 

similar to the troublesome problem of mode 

collapse in adversarial generators [27]. 

 

Architecture: In this section, we explore the 

architecture for generative model that 

generates better tomato plant disease images on 

an unaligned dataset in the following aspects: (a) 

using WGAN loss [29] in the adversarial part 

and (b) using a generator with skip layers to 

increase multi-scale invariance. 

For the generator we experiment with different 

 

Fig. 3: Synthetic images from the evaluated model. The real images shown at the leftmost column 

are inputs that the synthetic images are based on. 



structures. As demonstrated in the next section 

a widely adopted variant known as the U-net  

architecture [30] performs well under our data 

and settings. Deeper networks proposed in 

CycleGAN [20] are known to better capture 

high-level features and concepts, however, the 

vanishing gradient problem affects the 

convergence rate as well as the quality of 

convergence. Several works emerged to 

overcome this issue among which U-Net [23] 

is of particular interest. U-Net incorporates 

longer skip connections between its 

encoder-decoder architecture to preserve 

low-level features and hence the quality of 

convergence. 

Motivated by [20], we use a patch-based 

discriminator D and train it iteratively along with 

G. Patch based discriminator ensures 

preservation of high-frequency details that are 

usually lost when we only use L1 loss. All the 

convolutional layers in D use a filter size of 4 × 

4. This novel combination of the U-net 

generator and Patch-wise discriminator 

architecture enables efficient learning and 

improved convergence quality. 

 

 EXPERIMENTS AND RESULTS 

 

In this section we elaborate on our final 

experimental setup for our task of synthetic 

tomato plant disease generation: 

 

Data: We collected the images for our dataset 

(Fig. 1) effected with several common diseases 

and pests in tomato plants under various 

circumstances like illumination, temperature, 

season, humidity, and places where they were 

taken, using simple camera devices. For that 

purpose, we have braced our dataset with 

images having distinct features and 

environmental conditions. These conditions help 

to estimate the process of infection and deduce 

how a plant is affected by the disease or pest(its 

origin or possible developing cause). 

After collecting these images for the dataset, 

we manually annotated each image containing 

the disease or pest by categorizing each image 

into its respective class. The judgement from 

the professionals in the area is a must, 

depending on the infection status in different 

diseases that look similar, where the information 

for identifying the disease was required. This 

serves as our ground truth. When gathering the 

images, we find that the best way to get more 

exact information is to capture the samples 

containing the ROIs as the main part of the 

image. This marks the solution to the problem 

formulation of synthesizing images using GANs 

for the infected part of the plant. 

 

Fig. 4.  Our dataset before (left) and after 

class balancing using synthetic data 

augmentation (right) using GANs in 

image-to-image translation setting. 

 

Training details: Using a single Nvidia 12 GB 

Titan X GPU, we train the model for an average 

of 180 epochs for each. The generation of 

synthetic images took 0.0176 ms per image. We 

use the Adam solver with a batch size of 1. We 

keep the learning rate constant for the initial 

100 epochs and then linearly decay this learning 

rate to zero over the next epochs. Weights are 

initialized from a Gaussian distribution with 

mean 0 and standard deviation 0.02. We 

employed this model to train each tomato plant 

disease class distinctly in our dataset. Figure 3 

presents some examples of the synthesized 

tomato plant disease samples from each class. 

To keep the classes balanced, we sampled the 

required number of synthetic images for classes 

with insufficient data only (Figure 4).  

 

Metrics for Quantitative evaluation: It is well 

known that GAN results are hard to evaluate as 

the applications are generally on the edge of art 

and technology.  

We evaluate our results with the metric FID 

score [31] that correlates well with human 

judgment. FID score is known to capture the 

similarities of generated image to real one 

better than the Inception Score [14]. Even  



though this metric assists us to avoid 

depending on human evaluations as it associate 

well with our subjective judgment of image 

quality [14], it is recommended to use a large 

sample  

size to calculate this metric, otherwise the true 

realization of the generator can be 

underestimated. Considering that there are not 

many samples in our test data to evaluate and 

easily tell the difference, our results are mainly 

based on manual inspection of the visual fidelity 

of the generated images as reported in Fig. 3 

and Fig. 4. 

Apart from the metric mentioned above, we 

also evaluate using the state-of-art evaluation 

model namely neural image assessment (NIMA) 

[32]. The NIMA [32] estimates the aesthetic 

qualities in aspects of photography skills and 

perceptual relevance. A Larger value of NIMA, 

and smaller FID value denote better quality, 

respectively. The corresponding results verify 

that the generated synthetic plant disease 

samples can be utilized over any CNN-based 

architecture for diverse computer vision tasks 

like detection and semantic segmentation to 

achieve state-of-the-art results in that field 

without the requirement of exclusively huge 

datasets. 

 

Results: In Table 1 we evaluate on the 

generated images for the class powdery mildew 

disease from our tomato plant disease dataset. 

Using a set of 3,172 images of healthy tomato 

plant leaves we translate them using both 

CycleGAN and CycleGAN with U-net 

generator trained on 1,289 powdery mildew 

images as illustrated in Fig.5. From both Table 

1 and Fig. 5, we conclude that CycleGAN with 

U-net generator successfully captures the 

low-level details to a much larger extent when 

compared to the baseline CycleGAN 

implementation. Hence this method can 

synthesize translations with an improved 

perceptual quality and shape preservation. It 

also produces more realistic textures as 

compared to the baseline. 

We also report the metric scores for some 

classes in our dataset set suffering from acute 

shortage of samples in Table 2. Compared with 

 

Fig. 5: We compare the effect of using a 

CycleGAN with U-Net generator that 

incorporates longer skip connections 

between its encoder-decoder architecture 

to preserve low-level features and hence 

an improved visual and perceptual quality 

in the generated. From left to right: input 

image, translated image using CycleGAN, 

translated image using CycleGAN with 

U-net generator. 

 

Class 

Metric 
Whitefly Canker Leaf Miner Powdery mildew 

NIMA score 4.76 ± 1.73 4.56 ± 1.86 4.42 ± 1.92 4.61 ± 1.86 

FID score 49.85 41.74 27.40 56.34 

Table 2.  Table of FID, NIMA scores for samples generated using 4 classes from our tomato plant 

disease dataset. The ground truth images produce a NIMA score of Whitefly (4.79 ± 1.72), 

Canker (4.55 ± 1.89), Leaf Miner (4.41 ± 1.93), Powdery Mildew (4.72 ± 1.83). NIMA: higher 

is better, FID: lower is better. 

Model 

Metric 
CycleGAN 

CycleGAN + 

U-net 

NIMA score 4.584 ± 1.860 4.612 ± 1.859 

FID score 57.76 56.34 

Table 1.  Quantitative results for healthy 

tomato plant leaves-to-leaves infected 

with powdery mildew obtained using our 

tomato plant disease dataset. The ground 

truth powdery mildew images produce a 

NIMA score of 4.72 ± 1.83. NIMA: higher 

is better, FID. 



ground truth images, generated images for 

these classes have, on average, 0.6% lower 

average NIMA scores than their ground truth 

images. It shows that the generated images 

have much similar quality to the ground truth 

images. Fig. 4 displays the class distribution of 

our tomato plant disease dataset after using 

synthetic data augmentation for a successful 

class balancing and augmentation. 

 

 CONCLUSION 

 

In conclusion, we presented a method that can 

be used for generating synthetic images for 

data augmentation and balancing to improve the 

performance for various deep learning 

challenges suffering with limited available plant 

disease data. We demonstrated this technique 

over our tomato plant disease dataset and 

synthesized fake diseased image samples. We 

also introduce a U-net generator in CycleGAN 

for improved perceptual quality in the 

generated samples. We believe that other 

problems can benefit from using these synthetic 

samples, and that the presented approach can 

lead to a stronger and more robust support 

system.  

We will work to explore the ability of this 

model and the corresponding results. And we 

will further research to verify that the 

generated synthetic plant disease samples can 

be utilized over any CNN-based architecture 

for diverse computer vision tasks like 

recognition, detection and semantic 

segmentation to achieve comparable results in 

that field without the requirement of 

exclusively large datasets. 
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