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Abstract 
The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also 

one of the most important early biomarkers for Alzheimer's disease detection. The measurements of 

hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art 

methods require a large amount of time. In addition, the structural brain development is investigated using 

MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the 

significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D 

convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D 

patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained 

models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure 

volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an 

MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 

12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The 

quantitative study on the predicted volumes over the ground truth volumes shows that the proposed 

approach can be used as a proxy. 
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I. INTRODUCTION 

 

The shape, size, and structural changes of 

different brain regions can cause various 

neurological disorders [1-3]. Hippocampus is one 

of the most important regions of interest (ROIs) 

which has been investigated by different research 

groups [4-6] for several reasons, such as 

Alzheimer’s disease. The neuro-degenerative 

disorders are a significant research area where 

researchers are contributing to assist in the 

diagnosis process. Several biomarkers, such as 

Amyloid beta (Aβ42), Tau protein (Tau), 

Phosphorylated Tau (P-Tau) and hippocampal 

volume are used to diagnose Alzheimer’s disease 

[3,7,8]. The hippocampal volume atrophy is known 

to be linked with Alzheimer’s disease and Epilepsy. 

Therefore, automatic hippocampal volume 

measurement is an important task to provide 

on-site diagnosis.  

Although several semi-automatic and automatic 

methods [4,6,9] have already been proposed to 

measure the hippocampal volume, however, the 

manual intervention by expert radiologist remains 

the gold standard method. Automatic tools, such as 

FreeSurfer, FIRST and SPM are being used to 

measure the hippocampal volume. FreeSurfer 

[6,10,11] is an atlas-based system that uses its 

reference atlas image to register/segment and 

estimate the volumes of ROIs of the target Magnetic 
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Resonance Imaging (MRI) data. 

FreeSurfer is a software package to analyze and 

visualize the structural and functional MRI data 

from cross sectional/longitudinal studies. 

FreeSurfer offers a full processing stream for both 

types of data (structural and functional MRI data), 

which includes skull stripping, B1 bias field 

correction, gray and white matter segmentation, 

labeling of regions of cortical and sub-cortical 

structure, statistical analysis as well as analysis on 

the cortical surface data and so on. We have used 

FreeSurfer (version 6.0) to measure ground truth 

volumes for our proposed model’s training, 

validation and testing. FreeSurfer using recon-all 

pipeline with additional flags to measure the 

hippocampal volumes analyzed the Gwangju 

Alzheimer’s and Related Dementia (GARD) cohort 

data set. This version of FreeSurfer [6,10] has 

auxiliary facilities to estimate the hippocampal 

subfields volumes as well.  

Deep learning-based approaches are contributing 

widely in various fields, such as agriculture, medical 

imaging, traffic detection, automobiles and so on. 

The convolutional neural network (CNN) [12-13] 

is mainly used in an image-based study. In medical 

imaging, 2-D and 3-D image data are analyzed 

using CNN to detect abnormalities, localize an exact 

position of any specific ROI, segment the ROIs and 

measure the volumes and thickness of ROIs as well 

as classify the abnormal and normal growth of 

tissue/cell in any specific ROI.  

An ensemble model of 3-D convolutional neural 

network has been proposed to measure the 

hippocampal volume in one-step in this research 

work. The proposed model uses a two-stage 

ensemble Hough-CNN [14] predicted hippocampal 

voxel location to extract 3-D patches to estimate 

the left and right hippocampi’s volumes from an MRI 

scan. The 3-D patches centers were selected 

uniformly, which covered 8x8x8 cubic regions from 

the two-stage ensemble Hough-CNN localized 

hippocampal voxel position.  

 

1. Contribution 
We proposed a novel technique to estimate the 

volume from 3-D MRI data in a single step. This 

proposed method does not generate any mask 

images, which means that this method directly 

leads to a straight forward floating numbers of a 

ROI’s volume and discard the unnecessary post 

processing of the mask image. Dependency on 

mask generation is common for atlas-based 

methods as well as other deep learning-based 

methods. Our method comparatively takes less time 

(5 seconds only) to infer the volume. The proposed 

3-D CNN network is designed with a very few 

numbers of parameters to reduce the model 

complexities and training time. 

        

               (a)                                         (b) 
Fig. 1. Soft segmented pure volume measurement network pipeline for training and testing is shown in 

above figures. (a) T1-weighted MRI scans were fed into the trained two-stage ensemble Hough-CNN 

to locate the left and right hippocampi and then to the 3-D patch generator to extract 3-D patches. The 

preprocessed 3-D axial, coronal and sagittal patches were used to trained the models. The same MRI 

scans were analyzed using FreeSurfer to measure the volumes. The measured volume was used as the 

ground truth during the models’ training. The axial, coronal and sagittal models were trained separately. 

For simplicity, one loss function was drawn in the above figure. (b) In the test phase, extracted 3-D 

patches were fed into the trained ensemble model. The ensemble model predicts the volumes which were 

further processed and compared with the ground truth volumes. 

Smart Media Journal / Vol.9, No.2 / ISSN:2287-1322 2020년 06월 스마트미디어저널               23



Table 1. The network architectures used to measure the left and right hippocampi's pure volume

1Model 

Name Network Architecture  Activation 
Function 

Batch 
Normalization Optimizer 

LH 
 

ReLU All Layers  Adam 

RH 
 

ReLU All Layers  Adam  

                                           
1 LH and RH stand for the left and right hippocampal model, respectively and they have dropout layer after first 

fully connected layer (25%) and second fully connected layer (35%). 

Isample size  = Network input, = Convolutional layer, with stride 2,  = Fully connected layer.

 
 

II. RELATED WORK 

 

Several research initiatives [1,8,15-18] are being 

conducted on different regions of brain for various 

neurological developments and dysfunction. Aging, 

accidental damage, combat-related post-traumatic 

stress and mental pressure can cause neurological 

disabilities, which can lead to different form of 

dementia, such as Alzheimer’s disease and Epilepsy 

[3]. In addition, various types of neurodevelopment, 

such as memory development on early age of infant 

are being analyzed based on different biomarkers 

[1]. The correlation of these disorders and the 

neurodevelopment with the hippocampal volume 

were studied thoroughly by the number of research 

groups [1,8,15]. On the other hand, the brain 

regions were segmented and the volumes were 

measured by other groups of researchers 

[9,18-19]. 

 

The most popularly used method to segment the  

brain regions from MRI is atlas-based method [6, 

10-11,15,20]. The cerebral substructure volumes 

were measured and the cerebral cortex were 

segmented in [15]. The structural changes of 

hippocampal volume, thickness and shape are being 

analyzed by the neuroscience researchers to find 

the causes of normal aging and disorders. The 

imaging properties of brain tissue can alter because 

of these changes. In addition, these changes also 

can alter the morphometric properties of the 

subcortical structures. The concentrated study on 

hippocampus was carried out by [8,10,16-19] to 

find the possible causes for neurodegenerative 

disorder and normal aging. On the other hand, a  

 

discriminant method was proposed by aggregating 

an Adaboost classifier to effectively classify the 

cognitive states from fMRI data in [21].  

Different network architectures and methods 

[22-25] have been proposed to perform 

classification, detection, localization, segmentation 

and super-resolution in medical and non-medical 

fields using Hough-forest, machine learning and 

deep learning. Deep learning-based approaches are 

being investigated to estimate the hippocampal 

volumes as well as the neurological development. A 

group of researchers [1] developed a CNN-based 

brain network to analyze the cognitive and motor 

development of infant’s brain. A 3-D patch-based 

end-to-end learning approach has been proposed 

by Christian Wachinger et al., [25] to segment and 

classify 26 ROIs from MRI data. This model 

simultaneously learns a multiclass classification and 

an abstract feature extraction. This complicated 

operation is performed using two hierarchical 

networks where one network separates the 

foreground from background and second network 

identifies 26 ROIs from foreground. Similarly, 26 

ROIs from MRI and Ultrasound images were 

automatically localized and segmented using 

Hough-CNN proposed by F. Melliti et al., in [26]. 

A 3-D CNN-based architecture [9] has been 

proposed to segment the subcortical regions from 

brain MRI scan. On the other hand, a two-phase 

colonial walk-based approach [27] has been 

proposed to detect 8 anatomical land marks from 

CT scans.  

An ensemble-based deep learning model has been 

proposed to localize the left and right hippocampus 

in [14]. A simplified U-shape network architecture 

[28-29] has been proposed to segment the 2-D 
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Table 2. Network Architecture for Localization Models. 

2Model 
Name Network Architecture Activation 

Function  
Batch 

Normalization  Optimizer  

GH-CNN 
GMlh 

 ReLU All Layers  Adam 
GMrh 

 

LH-CNN 
LMlh 

 ReLU All Layers Adam 
LMrh 

 

                                           
2 GH-CNN and LH-CNN stand for global Hough-CNN and local Hough-CNN, respectively. GM and LM stand 

for global model and local model, where the subscript rh and lh stand for left and right hippocampus, 
respectively. 

Isample size  = Network input, = Convolutional layer, with stride 2,  = Fully connected layer.  

 

and 3-D medical images. A novel 3-D 

CNN-based model [30] was proposed to diagnose 

Alzheimer’s disease from rs-fMRI. Similarly, a 

3-D CNN architecture [31] was constructed to 

evaluate the functional decline in Alzheimer’s 

dementia from rs-fMRI measurements. 

We have organized this research work in the 

following manner. In section III, we explained the 

methodology, network architecture, and loss 

function and localization procedures. In the 

following section, we described the dataset, 

soft-segmented pure volume measurement 

procedures, error calculation process and provided 

an overview about the proposed method with its 

limitation. We summarized this research work in 

section V. 

 

III. PROPOSED METHOD 

 

If a 3-D image patch contains the complete 

hippocampal volume and it is possible to 

quantitatively estimate the volume externally, then 

3-D CNN can extract appropriate features 

automatically using the 3-D images patches and 

the numerical values of the volumes to train a 

model that can later be used to predict volumes for 

new 3-D image data. Furthermore, the voxels 

attributed to hippocampus are the target voxels, 

where the overlapping voxels in the boundary 

region can simultaneously represent the neighbor 

ROIs that must need to be separated to 

accurately measure the volume. CNN is good at 

extracting automatic features from input image. 

The overlapping neighbor voxels’ issue can be 

resolved using the strength of CNN. Therefore, to  

 

measure the pure volume from MRI data in 

one-step, an ensemble model of 3-D CNN has 

been constructed. The 3-D patches were 

extracted from the MRI scans by locating the left 

and right hippocampi with the help of two-stage 

ensemble Hough-CNN [14]. Using 3-D patches, 

 

 

Fig. 2. (a) The voxel location determined by the 

two-stage ensemble Hough-CNN in the axial, 

coronal and sagittal views and 3-D visualization 

of left and right hippocampi of an MRI scan with 

their respective volumes are displayed above. (b) 

The 3-d patch extraction process is shown, 

where red dot denotes as the patches’ centers. 
 
the 3-D CNN models were trained and the 

trained models were used to construct the 

ensemble model. In the test phase, the 

preprocessed 3-D patches were fed to the 

ensemble 3-D CNN model to predict the 

volumes. 
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1. Patch Generation and Ground Truth Preparation 
From 326 MRI scans of GARD dataset, 325 MRI 

scans were used in this study. Using patient 

identification number, the MRI scans were 

separated into training (195), validation (65) and 

testing (65) sets. The 3-D patches were extracted 

from the vicinity of the hippocampus. The left and 

right Hippocampi were localized using a two-stage 

ensemble Hough-CNN model [14] from MRI scans. 

Using the localized voxel position, the 8x8x8 cubic 

region was selected to extract 3-D patches with a 

dimension of 96x96x96. The 3-D patches were 

resized into a dimension of 32x32x32. The patches 

were then separated to the axial, coronal and 

sagittal slices. The slices were normalized using 

mean of zero and the standard deviation of one. 

Then, the randomly selected axial, coronal and 

sagittal patch slices were rotated by a ϴ-degree 

angle and reconstructed back into 3-D patches of 

the axial, coronal and sagittal views. These 

preprocessed patches were used to train three 

different 3-D CNN models. The ground truth 

volumes were prepared by FreeSurfer using 

original T1-weighted MRI scans.  3-D CNN 

models were trained against the ground truth 

volumes. The representative localization of the 

hippocampus with patch extraction process as well 

as the respective volumes are shown in Fig. 2.  

 

 

Fig. 3. Training and validation loss curves. The 

representative loss curve is shown in above for 

the axial model of the left hippocampus. The 

models were trained with 200 epochs. 

 

2. Network Architecture 
The ensemble model was constructed using three 

3-D CNN models. Each model has the same 

numbers of convolutional layers with a predefined 

kernel size. The constructed each model has four 

convolutional layers and three fully connected 

layers. First and third convolutional layers have 

3x3x3 kernel whereas second and fourth 

convolutional layers have 5x5x5 kernel. The 

number of filters were different in different layers. 

The convolution layers are followed by a batch 

normalization layer [32] and a ReLU activation 

function [33]. A max-pooling layer was added 

after second and third convolutional layers. The 

fully connected layers were also followed by a 

batch normalization and ReLU activation function 

except for the last fully connected layer. Only a 

batch normalization layer was concatenated with 

the last fully connected layer. 

Adam [34] optimizer was used with its default 

parameters setting with one modification. We have 

changed the learning rate to 1e-4. Adam is an 

optimization algorithm, which can be used in place 

of classical stochastic gradient descent algorithm to 

update the weights iteratively based on training 

data. Adam simultaneously uses the benefits of 

AdaGrad and RMSProp and it offers many facilities, 

such as it is computationally efficient, required less 

memory, appropriate for very noisy/sparse gradient 

and so on. However, the proposed network 

parameter detail is shown in table 1. 

 

3. Loss Function 
 The mean squared error (MSE) was used to 

observe the training progress. If the measured 

volumes by the FreeSurfer and the proposed 

method are (Vaf, Vcf, Vsf) and (Vap, Vcp, Vsp) 

respectively, then the loss function can be 

expressed in the following way. 

 
Here, n is the number of samples used in the 
training process and k is the number of 3-Dpatches 
extracted from each sample MRI scan. The 
representative training and validation loss curves 
for the axial view of the left hippocampus are 
shown in fig. 3.   
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Table 3. Five Lowest errors for left hippocampus. 

Measured Volume (mm3) -FreeSurfer Measured Volume (mm3) -Our Method Absolute 
Error % 

Average 
Error %± STD 

3638.3 3587.4 1.4 

11.7±8.8 
3755.0 3685.0 1.9 
4004.6 3924.9 2.0 
3799.6 3721.2 2.1 
3386.0 3467.5 2.4 

 

Table 4. Five Lowest errors for right hippocampus. 

Measured Volume (mm3) - FreeSurfer Measured Volume (mm3) -Our Method Absolute 
Error % 

Average 
Error %± STD 

3805.7 3802.0 0.1 

12.5±12.8 
3966.6 3973.5 0.2 
4188.7 4171.7 0.4 
3728.8 3747.9 0.5 
3970.9 3997.2 0.7 

 

4. Hough-CNN 
Hough-CNN learns the displacement vectors 

between the target location to the center of the 

patches extracted from a large image slice of an 

MRI scan. Uniformly distributed random points 

inside the MRI scans are used to extract patches to 

train the Hough-CNN model and the train model 

predicts the displacement vectors, which are added 

with the randomly generated points, where the 

resultants ultimately point to the target hippocampal 

location. Therefore, we have constructed two pairs 

of Hough-CNN model to locate accurately the left 

and right hippocampi by following [14].  

 

5. Localization  
Accurate localization of the target ROI is crucially 
important in the volume measurement process. We 
designed a two-stage ensemble Hough-CNN 
model similar to [14] with one modification. The 
global and local models were constructed with the 
similar number of convolutional and fully connected 
blocks. For both stage, we used only one model. 
The numbers of filters used in different layers are 
different but the numbers of filters are same in 
between global and local models. We constructed 
two sets of models to estimate the voxel location 
two sets of models to estimate the voxel location of 
left and right hippocampi. After each convolutional 
layer and fully connected layer, a batch 
normalization layer [32] and a ReLU [33] 
activation function was concatenated to build the 
2-D CNN model except last fully connected layer. 
The last fully connected layer had only batch 
normalization layer. Adam [34] optimizer with  
 

default parameters setting was used to train the 
global and local models. Mean squared error is 
considered as loss function to observe the training 
process. In the test phase, the trained global and 
local models were amalgamated to estimate the 
hippocampus location. The estimated voxel location 
of the left and right hippocampi were used in the 
ensemble model to extract the 3-D patches where 
each patch contains complete hippocampal volume. 
The parameter detail of the two-stage ensemble 
Hough-CNN network is shown in table 2. 

 

IV. EXPERIMENTAL RESULTS 

 

1. Dataset 
The Gwangju Alzheimer’s and Related Dementia 

(GARD) cohort dataset was used in this study. The 

dataset consists of 326 MRI scans of 326 patients 

and it is divided into four classes: (a) 

Asymptomatic Alzheimer’s Disease (aAD) (35) 

(b) Mild Alzheimer’s Disease (mAD) (39) (c) 

Alzheimer’s Disease Dementia (ADD) (81) (d) 

normal control (NC) (171). All MRI scans are 

T1-weighted and most of the MRI scans have the 

dimension of 320x212x240 with a voxel size of 

0.512 mm3. The range of patient age was from 49 

to 87 years, where the average age was 70.0184 

± 6.074 (avg. age ± STD).  

 

2. Pure Volume Measurement Procedures 
If from each MRI scan k number of 3-D patches 

were extracted for the axial, coronal and sagittal 

views, where each 3-D patch contains the 

complete hippocampal volume, then one-step 
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Fig. 4. Graphical representation of the estimated volume differences between our method and FreeSurfer. 

This bar graph represents the comparative estimation of the left hippocampal volumes of 65 test samples by 

the proposed method against the FreeSurfer. 

Fig. 5. Graphical representation of the estimated volume differences between our method and FreeSurfer. 

This bar graph illustrates the comparative estimation of the right hippocampal volumes of 65 test samples by 

the proposed method against the FreeSurfer.
 

predicted pure volume by the ensemble model can 

be expressed in the following way 

 

 Here, Vap, Vcp, and Vsp are the predicted volumes 
of 3-D patches extracted from the axial, coronal 
and sagittal views. Moreover, Vp is the estimated 
pure volume by the ensemble model. The measured 
volumes for 65 test MRI scans by our method and 
FreeSurfer is reported using bar graph in fig. 4 and 
fig. 5. 
 

3. Error Calculation 
 If Vp and Vf are the measured volume by our 
method and FreeSurfer, respectively, then the 
absolute error can be calculated using following 
expression. 

 

Here, Epv is the absolute error. Next, we can 
express the error in percentage in the following 
manner. 
 

 
 

     

 Here, E% is the percentage error. The model 

performance can be verified through its percentage 

error. The average percentage errors for 65 test 

MRI scans of the left and right hippocampi are 

shown in tables 3 and 4. 

We have conducted the training, validation, and 

testing on a HP workstation Intel Xeon Processor 

(3.10 GHz) with INVIDIA Quadro MD4000 GPU 

(8GB) along with 32GB RAM. 

 

4. Discussion 

Alzheimer’s disease affected patients show a 

significant amount of hippocampal volume reduction 

by brain imaging, such as in MRI scan [35]. The 

proposed approach of an ensemble model of 3-D 

CNN is a promising alternative to the atlas-based 

method. The trained ensemble model of 3-D CNN 

is used to measure the hippocampal 

soft-segmented pure volumes. The preprocessed 
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3-D patches were fed to trained CNN models to 

predict the soft-segmented hippocampal pure 

volume. The motivation of this research work was 

to develop a deep learning model to estimate the 

soft-segmented pure volume and compared it with 

the atlas-based method, such as FreeSurfer to 

validate the proposed approach as a proxy. 

FreeSurfer estimates the pure volume in the soft 

segmentation period [36]. 

The hippocampal volume atrophy is one of the 

most significant biomarkers for Alzheimer’s disease 

diagnosis, where one-step measurement can 

effectively reduce the diagnosis time and deliver 

on-site report of the volume. The proposed 

method estimates 88.3% and 87.5% accurate 

volumes for the left and right hippocampi, 

respectively.  

 

5. Limitations 
 Although the proposed approach estimates the 
pure volume comparatively with a low error rate, 
however, it is required to observe the same cases 
against the manually measured volume. In addition, 
the inter-class imbalance problem as well as 
proper data distribution from different classes to 
the training, validation and testing sets need to be 
resolved.  

 

V. CONCLUSION 

 

 In this research work, we propose an ensemble 
model of 3-D CNN to estimate the soft-segmented 
pure volume of the left and right hippocampi from 
MRI scan. Using our proposed method, we have 
reported the pure volumes for 65 test MRI scans. 
The measured pure volumes are compared with the 
ground truth volume to estimate the error in 
percentage. The estimated errors for the left and 

right hippocampi are 11.7±8.8 (error% ± STD) and 

12.5±12.8 (error% ± STD), respectively. The 

quantitative studies showed us that the proposed 
method could be used as a proxy. The model 
performance can be improved by tuning the hyper 
parameters and increasing the number of training 
sample patches as well as distributing the 
inter-class data properly among the training, 
validation and testing sets. In our future study, we 
will study these aspects thoroughly. 

 

 

 

REFERENCES 

[1] J. Kawahara; C. J. Brown; S. P. 
Miller; B. G. Booth; V. Chau; R. E. Grunau; 

J. G. Zwicker; G. Hamarneh; “Brainnetcnn: 

Convolutional neural networks for brain 
n e t w o r k s ;  t o w a r d s  p r e d i c t i n g 

neurodevelopment,” NeuroImage, vol.146, 

p p . 1 0 3 8 – 1 0 4 9 ,  2 0 1 7 . 

[2] P. A. Yushkevich; B. B. Avants; S. R. 
Das; J. Pluta; M. Altinay; C. Craige; A. D. N. 

Initiative; et al.; “Bias in estimation of 

hippocampal atrophy using 
deformation-based morphometry arises 
from asymmetric global normalization: an 

illustration in adni 3T mri data,” Neuroimage, 

vol.50, no.2, pp.434–445, 2010 

[3] J. D. Bremner; P. Randall; T. M. 
Scott; R. A. Bronen; J. P. Seibyl; S. M. 
Southwick; R. C. Delaney; G. McCarthy; 

D. S. Charney; R. B. Innis; “Mri-based 

measurement of hippocampal volume in 
patients with combatrelated 

posttraumatic stress disorder,” The 

American journal of psychiatry, vol.152, 
no.7, p.973, 1995 

[4] E. R. Mulder; R. A. de Jong; D. L. 
Knol; R. A. van Schijndel; K. S. Cover; 
P. J. Visser; F. Barkhof; H. Vrenken; 

“Hippocampal volume change 

measurement: Quantitative assessment 
of the reproducibility of expert manual 
outlining and the automated methods 

freesurfer and FIRST,” NeuroImage, 

vol.92, pp.169–181, 2014 

[5] I. B. Malone; K. K. Leung; S. 
Clegg; J. Barnes; J. L. Whitwell; J. 
Ashburner; N. C. Fox; G. R. Ridgway; 

“Accurate automatic estimation of total 

intracranial volume: A nuisance variable 

with less nuisance,” NeuroImage, 

vol.104, pp.366–372, 2015 

[6] J. L. Winterburn; J. C. Pruessner; 
S. Chavez; M. M. Schira; N. J. Lobaugh; 

A. N. Voineskos; M. M. Chakravarty; “A 

novel in vivo atlas of human 

Smart Media Journal / Vol.9, No.2 / ISSN:2287-1322 2020년 06월 스마트미디어저널               29



hippocampal subfields using 
high-resolution 3 T magnetic 

resonance imaging,” NeuroImage, vol.74, 

pp.254–265, 2013 

[7] N. Sharma; A. N. Singh; 

“Exploring biomarkers for alzheimer’s 

disease,” Journal of clinical and 

diagnostic research: JCDR, vol.10, no.7, 
p. KE01, 2016 

[8] C. Omizzolo; D. K. Thompson; S. 
E. Scratch; R. Stargatt; K. J. Lee; J. 
Cheong; G. Roberts; L. W. Doyle; P. J. 

Anderson; “Hippocampal volume and 

memory and learning outcomes at 7 

years in children born very preterm,” 
Journal of the International 
Neuropsychological Society, vol.19, 

no.10, pp.1065–1075, 2013 

[9] J. Dolz; C. Desrosiers; I. B. Ayed; 

“3d fully convolutional networks for 

subcortical segmentation in MRI: A 

large-scale study,” NeuroImage, 

vol.170, pp.456–470, 2018 

[10] J. E. Iglesias; J. C. Augustinack; K. 
Nguyen; C. M. Player; A. Player; M. 
Wright; N. Roy; M. P. Frosch; A. C. 
McKee; L. L. Wald; B. Fischl; K. V. 

Leemput; “A computational atlas of the 

hippocampal formation using ex vivo, 
ultra-high resolution MRI: application to 

adaptive segmentation of in vivo MRI,” 

NeuroImage, vol.115, pp.117–137, 2015 

[11] J. E. Iglesias; K. V. Leemput; J. 
Augustinack; R. Insausti; B. Fischl; M. 

Reuter; “Bayesian longitudinal 

segmentation of hippocampal 
substructures in brain MRI using 

subject-specific atlases,” NeuroImage, 

vol.141, pp.542–555, 2016 

[12] Y. LeCun; Y. Bengio; G. E. Hinton; 

“Deep learning,” Nature, vol.521, 

no.7553, pp.436–444, 2015 

[13] Y. Lecun; L. Bottou; Y. Bengio; P. 

Haffner; “Gradient-based learning 

applied to document recognition,” in 

Proc. of the IEEE, pp.2278–2324, 1998 

[14] A. Basher; K. Y. Choi; J. J. Lee; B. 
Lee; B. C. Kim; K. H. Lee; H. Y. Jung; 

“Hippocampus localization using a 

two-stage ensemble hough 

convolutional neural network,” IEEE 

Access, vol.7, pp.73436–73447, 2019 

[15] N. J. Tustison; P. A. Cook; A. 
Klein; G. Song; S. R. Das; J. T. Duda; B. 
M. Kandel; N. van Strien; J. R. Stone; J. 

C. Gee; B. B. Avants; “Largescale 

evaluation of ants and freesurfer 

cortical thickness measurements,” 

NeuroImage, vol.99, pp.166–179, 2014 

[16] F. Cendes; F. Andermann; P. 
Gloor; A. Evans; M. Jones-Gotman; C. 
Watson; D. Melanson; A. Olivier; T. 

Peters; I. Lopes-Cendes; et al.; “Mri 

volumetric measurement of amygdala 
and hippocampus in temporal lobe 

epilepsy,” Neurology, vol.43, no.4, 

pp.719–719, 1993 

[17] F. van der Lijn; T. den Heijer; M. M. 

B. Breteler; W. J. Niessen; “Hippocampus 

segmentation in MR images using atlas 
registration, voxel classification, and 

graph cuts,” NeuroImage, vol.43, no.4, 

pp.708–720, 2008 

[18] O. T. Carmichael; H. A. 
Aizenstein; S. W. Davis; J. T. Becker; P. 
M. Thompson; C. C. Meltzer; Y. Liu; 

“Atlas-based hippocampus 

segmentation in alzheimer’s disease and 

mild cognitive impairment,” NeuroImage, 

vol.27, no.4, pp.979 – 990, 2005 

[19] P. Coupé; J. V. Manjón; V. Fonov; 

J. Pruessner; M. Robles; D. L. Collins; 

“Patch-based segmentation using 

expert priors: Application to 
hippocampus and ventricle 

segmentation,” NeuroImage, vol.54, 

no.2, pp.940 – 954, 2011 

[20] J. E. Iglesias; K. V. Leemput; P. 
Bhatt; C. Casillas; S. Dutt; N. Schuff; D. 

30             2020년 06월 스마트미디어저널 Smart Media Journal / Vol.9, No.2 / ISSN:2287-132230



Truran-Sacrey; A. L. Boxer; B. Fischl; 

“Bayesian segmentation of brainstem 

structures in MRI,” NeuroImage, 

vol.113, pp.184–195, 2015 

[21] T. D. Vu; H.-J. Yang; L. N. Do; T. 

N. Thieu; “Classifying instantaneous 

cognitive states from fmri using 
discriminant based feature selection and 

adaboost,” Smart Media Journal, vol.5, 

no.1, pp.30-37, 2016 
[22] J. Gall; A. Yao; N. Razavi; L. J. V. 

Gool; V. S. Lempitsky; “Hough forests 

for object detection, tracking, and action 

recognition,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol.33, no.11, 

pp.2188–2202, 2011 

[23] M. TrieuTran; G. SangLee; 

“Super-resolution in music score 

images by instance normalization,” 

Smart Media Journal, vol.8, pp.64–71, 

2019 
[24] H. T. Tran; A. R. Oh; I. S. Na; S. 

H. Kim; “Liver segmentation and 3d 

modeling from abdominal ct images,” 

Smart Media Journal, vol.5, no.1, 

pp.49–54, 2016 

[25] C. Wachinger; M. Reuter; T. 

Klein; “Deepnat: Deep convolutional 

neural network for segmenting 

neuroanatomy,” NeuroImage, vol.170, 

pp.434–445, 2018 

[26] F. Milletari; S. Ahmadi; C. Kroll; A. 
Plate; V. E. Rozanski; J. Maiostre; J. Levin; 

O. Dietrich; B. Ertl-Wagner; K. Bötzel; N. 

Navab; “Houghcnn: Deep learning for 

segmentation of deep brain regions in MRI 

and ultrasound,” Computer Vision and Image 

Understanding, vol.164, pp.92–102, 2017 

[27] W. A. Al; H. Y. Jung; I. D. Yun; Y. 
Jang; H.-B. Park; H.-J. Chang; 

“Automatic aortic valve landmark 

localization in coronary ct angiography 

using colonial walk,” PLOS ONE, vol.13, 

pp.1–23, 2018 

[28] O. Ronneberger; P. Fischer; T. 

Brox; “U-net: Convolutional networks for 

biomedical image segmentation,” in 

Medical Image Computing and 
Computer-Assisted Intervention - 
MICCAI 2015-18th International 
Conference Munich, Germany, October 5 
- 9, 2015, Proc. Part III vol.9351 of 
Lecture Notes in Computer Science, 

pp.234–241, Springer, 2015 

[29] Ö. Çiçek; A. Abdulkadir; S. S. 

Lienkamp; T. Brox; O. Ronneberger; “3d 

u-net: learning dense volumetric 

segmentation from sparse annotation,” 
in International conference on medical 
image computing and 
computer-assisted intervention, 

pp.424–432, Springer, 2016 

[30] N. T. Duc; S. Ryu; M. N. I. 
Qureshi; M. Choi; K. H. Lee; B. Lee; 

“3d-deep learning based automatic 

diagnosis of alzheimer’s disease with 

joint mmse prediction using 

resting-state fmri,” Neuroinformatics, 

vol.18, no.1, pp.71–86, 2020 

[31] M. N. I. Qureshi; S. Ryu; J. Song; 

K. H. Lee; B. Lee; “Evaluation of 

functional decline in alzheimer’s 

dementia using 3d deep learning and 

group ica for rs-fmri measurements,” 
Frontiers in aging neuroscience, vol.11, 
p.8, 2019 

[32] S. Ioffe; C. Szegedy; “Batch 

normalization: Accelerating deep 
network training by reducing internal 

covariate shift,” in Proc of the 32nd 

International Conference on Machine 
Learning, ICML 2015, Lille, France, 
6-11 July 2015, vol.37 of JMLR 
Workshop and Conference Proceedings, 

pp.448–456, JMLR.org, 2015 

[33] V. Nair; G. E. Hinton; “Rectified 

linear units improve restricted 

boltzmann machines,” in Proc. of the 

27th International Conference on 
Machine Learning (ICML-10), June 

Smart Media Journal / Vol.9, No.2 / ISSN:2287-1322 2020년 06월 스마트미디어저널               31



21-24, 2010, Haifa, Israel (J. 

Fürnkranz and T. Joachims, eds.), 

pp.807–814, Omnipress, 2010 

[34] D. P. Kingma; J. Ba; “Adam: A 

method for stochastic optimization,” in 

3rd International Conference on 
Learning Representations, ICLR 2015, 
San Diego, CA, USA, May 7-9, 2015, 
Conference Track Proceedings, 2015 

[35] K. Y. Choi; J. J. Lee; T. I. 
Gunasekaran; S. Kang; W. Lee; J. 
Jeong; H. J. Lim; X. Zhang; C. Zhu; 

S.-Y. Won; et al.; “Apoe promoter 

polymorphism- 219t/g is an effect 
modifier of the influence of apoe "4 on 

alzheimer’s disease risk in a multiracial 

sample,” Journal of clinical medicine, 

vol.8, no.8, p.1236, 2019 
[36] https://surfer.nmr.mgh.harvard.ed
u/fswiki/ HippocampalSubfields 
(accessed June 15, 2020). 

 
 
 
 

Authors 
 

  
   

Abol Basher 

  

He received B.S. degree in 

Electrical and Electronics 

Engineering from 

Mymensingh Engineering 

College at the University of 

Dhaka in Bangladesh in 2015. In 2020, he has 

completed his M.S. degree in Computer 

Engineering from Chosun University, South 

Korea. Currently, he is attending his doctoral 

program in the department of Computer 

Engineering in Chosun University and working 

as a research assistant in the Computer Vision 

Lab. His research interests include medical 

image processing, computer vision, and deep 

learning. 

 

 

 

 

Samsuddin Ahmed 

  

He received bachelor’ s 

degree in computer science 

and engineering from 

university of Chittagong, 

Bangladesh in 2010. In 

2020, he received his master’ s degree in 

computer engineering from Chosun University, 

South Korea. Since 2010, he served as faculty 

member of computer science and engineering 

in different universities in Bangladesh. His 

research interests include computer vision and 

image processing, medical imaging, machine 

learning, etc.  

 
Ho Yub Jung    

 

 He received the B.S. 

degree in electrical 

engineering from University 

of Texas at Austin in 2002 

and the M.S. and Ph.D. 

degrees in electrical engineering and computer 

science from the Seoul National University in 

2006 and 2012, respectively. He was with 

Samsung Electronics for two years as a senior 

engineer. From 2017, he has been an assistant 

professor in the Department of Computer 

Engineering, Chosun University. His research 

interests include computer vision, machine 

learning, and medical imaging. 

32             2020년 06월 스마트미디어저널 Smart Media Journal / Vol.9, No.2 / ISSN:2287-132232




