

Hyper-parameter Optimization for Monte Carlo Tree

Search using Self-play

Jin-Seon Lee*, Il-Seok Oh**

Abstract
The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It

has several hyper-parameters that require an optimization for showing the best performance. Due to the

stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the

self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a

winner path over the hyper-parameter space while performing the self-play. The top-q longest winners

in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in

Korean name) showed a promising result.

 Keywords : Machine learning | Hyper-parameter optimization | Monte Carlo tree search | m-n-k game

I. INTRODUCTION

In game industry, it is not unusual to use pattern

analysis or machine learning[1]. Many problems of

machine learning that is impossible or difficult to

solve using deterministic method uses the Monte

Carlo method that relies on a stochastic process

using random number generator[2]. The Monte

Carlo tree search (MCTS) is one of the most

famous instance of the Monte Carlo methods in AI.

The MCTS is a heuristic and stochastic tree search

algorithm that is used specifically to develop a

powerful game program[3,4]. Initially the Monte

Carlo idea applicable to game playing was invented

under the name of adaptive multi-stage sampling

(AMS) to make Go program[5]. In 2006, Coulom

coined the MCTS and developed the Go-playing

program Crazy Stone[6]. The Deep Mind team took

the MCTS as an essential idea in developing

AlphaGo program that defeated world Go champion

Sedol Lee[7] and in later developing AlphaGo Zero

that defeated AlphaGo by 100:0[8].

In implementing an intelligent game playing

program, machine learning community has used for

a long time the minimax tree search algorithm that

needs a good evaluation function[9]. Unlike the

minimax that relies on the breadth-first search,

the MCTS does not need any evaluation function

and is free from the breadth-first search. The

computation and memory of the breadth-first

search increases exponentially as the search depth

increases. When the branching factor is large, the

computation becomes infeasible. The branching

factors of the Go game played on 19*19 board and

the 15*15*5 game that is used for our experiment

are 361 and 225, respectively. Due to high

branching factors of these games and difficulty of

devising reasonable evaluation functions, the

traditional minimax algorithm is inapplicable.

The idea of the MCTS is simple. The core

operation of the MCTS is to generate lots of

random playouts and choose the position with the

highest winning rate as the best move [3,4]. Since

a playout is made by random choice, the playout

generation is very fast and enough number of

playouts can be generated under a time constraint.

When more playouts are required, parallel

processing using GPU or multi-core is easily

applicable since playouts can be generated

independently.

Three hyper-parameters should be considered.

* Member, Professor, Department of Information and Security, Woosuk University.
** Member, Professor, Division of Computer Science and Engineering, Jeonbuk National University.

Manuscript : 2020. 09. 10

Confirmation of Publication : 2020. 10 25

Corresponding Author : Il-Seok Oh,

e-mail : isoh@jbnu.ac.kr

36 2020년 12월 스마트미디어저널 Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322
https://dx.doi.org/10.30693/SMJ.2020.9.4.36

The playout generation is actually controlled by

UCT (upper confidence bound applied to trees) that

balances the exploration and exploitation. The first

parameter is related to this balancing. The UCT

equation has a hyper-parameter λ which gives a

more weight on the exploration when it is large.

The λ is an important hyper-parameter of MCTS.

Another hyper-parameter is related to choosing

the best move. We have two options in choosing the

best move, taking the move with the highest

winning rate or the move with the largest number

of playouts generated. The third hyper-parameter

is the number of total playouts generated. When

allowing a more playouts, more accurate estimation

of the best move is possible while requiring more

computation time that may violate the game rule

constraining the time given to each player. These

three hyper-parameters should be optimized in

order to obtain the best performance of the

MCTS-based game programs.

Generally a machine learning algorithm needs the

hyper-parameter optimization[10]. It is known that

the random search is better than the grid search

[11]. The procedure of the hyper-parameter

optimization for the classification models such as

SVM, CNN, and RNN is easy since their learning

process is deterministic. The only step with a

stochastic nature is the weight initialization. The

only difficulty is the large amount of computation

time due to combinatorial explosion when the

number of hyper-parameters is large. On the

contrary, the MCTS has only three

hyper-parameters, but hyper-parameter

optimization is difficult since the process of

choosing the best moves is stochastic.

Wang et al. proposed a hyper-parameter

optimization algorithm[12]. They experimented on

a framework including MCST and other

functionalities like neural network. Due to the

complexity of the hyper-parameter optimization,

they used a very simple 6*6 Othello game. Ruijl et

al. proposed a hyper-parameter optimization

algorithm for MCST process[13]. The limitation of

the work is that only one hyper-parameter

controlling the exploration and exploitation (λ in

Eq.1) is optimized.

This paper proposes a method for optimizing

simultaneously three hyper-parameters of MCTS.

The core idea of the proposed method is to use the

self-playing capability of MCTS-based game

programs. Two program copies with different

hyper-parameter settings compete until the winner

is decided. The winner is recorded in a winner path.

Then a copy with newly generated

hyper-parameter setting is made. The last winner

and the new copy compete until the winner is

decided. The winner is recorded in the winner path.

This process is iterated for a long sequence and a

long winner path is obtained. We regard the

winners surviving a long subsequence in the winner

path as the competent hyper-parameter settings.

The top-q longest subsequences are taken from

the winner path. They compete each other as a

second round of competition and the final winner in

the second round is decided to be the optimal

hyper-parameter.

To verify the effectiveness of the proposed

method, we use the m∗ n∗ k game as testbed

problem, in which two players takes turn in placing

their stones like O and X on m∗ n board. The

winner is the player who first places k consecutive

stones in a row horizontally, vertically, or

diagonally. Specifically we used the 15*15*5 game,

whose Korean name is Omok meaning five stones.

The experiments showed a promising result that

identified successfully a competent player with

optimal hyper-parameter setting.

 Section 2 explains the MCTS algorithm and three

hyper-parameters. Section 3 describes our

proposed algorithm for optimizing three

hyper-parameters. Section 4 presents m-n-k

game and Section 5 gives experimental results.

Section 6 concludes the paper.

II. MCTS ALGORITHM AND HYPER-

PARAMETERS

1. Principle of MCTS

When the artificial intelligence (AI) playing a game

against human takes its turn at a game state, it

should choose the best move at the state to win the

game. The state becomes the root R of the search

tree. The children of R are the possible moves from

the state and the mission of MCTS is to choose the

best one among the possible moves. The MCTS

2020년 12월 스마트미디어저널 37Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

iterates n times the four steps: selection, expansion,

simulation, and backpropagation[3,4]. In each of the

iterations, a playout is generated and the data of the

nodes in the search tree regarding the number of

visits and number of winnings are updated using the

information of the playout. The four steps are

briefly described as follows.

1. Selection: Starting from R, select successively

the child nodes until a leaf node L is reached. The

leaf node is a node where the playout has never

been started from. The selection is performed

using the UCT equation that will be later described

in this section. The UCT-based child selection is

the core of the MCTS algorithm.

2. Expansion: Among children of L, select

randomly one of them, which will be denoted as C.

The node C is created and linked to the parent L

with downward and upward pointers in order to

track down and up the tree. Note that the node C

has two fields storing the number of wins and the

number of visit. We will denote two fields w/v in

Fig.1 where w and v represent win and visit,

respectively.

3. Simulation: Starting from C, a playout is made

by randomly selecting successively next moves

until the winner is decided.

4. Backpropagation: Using the playout, update the

w/v information for the nodes on the upward path

from C to R. When the O is winner of the playout,

the nodes corresponding to O’s turn increment both

of two fields w and v while the nodes for X’s turn

increment only v. When the X is winner of the

playout, the nodes corresponding to X’s turn

increment w and v while the nodes for O’s turn

increment only v. Fig.1 illustrates a cycle of four

steps with an example situation.

Fig. 1. Illustration of 4 steps of MCTS

In the selection step, the UCT plays an essential

role in balancing exploration and exploitation. Eq.1

is the equation used by UCT. The wi and vi

represents w and v of i-th child and n is the total

number of playouts simulated.

 (1)

The first term that is the winning rate forces

the exploitation since a child with a better winning

rate gets higher value. The second term

forces the exploration since a child being less

visited has a lower vi and results in a higher value.

The weight λ controls which term should influence

more on the final value.

2. Optimization of hyper-parameters

Three hype-parameters are found in MCTS

algorithm. The first one is the weight factor λ in

UCT equation (1). A large value of λ encourages

the exploration while a small value weighs the

exploitation. The usual recommendation is .

However depending on the game, the optimal value

may vary. The second hype-parameter is the type

38 2020년 12월 스마트미디어저널 Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

of choosing the best move. Two options are

available, one choosing the child with the highest

winning rate, i.e., highest w/v and the other with the

highest visits, i.e., highest v. The third

hyper-parameter is the number of playout

simulation. The more the playout is generated, the

more accurately the best move is chosen. However

more playouts result in more computation time that

might violate the game rule of time constraint.

Optimization of hyper-parameters in machine

learning is crucial for getting the optimal

performance. Two strategies are usually used; grid

search and random search. The grid search divides

each hyper-parameter in equal intervals or

logarithmic intervals. The grid search evaluates

each of combinations of hyper-parameters and

choose the best combination as optimal value of

hyper-parameters. The random search iterates the

generation and evaluation of a random combination

until the allowed computation time is exhausted.

Bergstra’s extensive experiments showed a

superiority of the random search[11].

The existing algorithms for optimizing

hyper-parameters including Bergstra’s study work

only for the deterministic learning situations. The

MCTS works stochastically, so we need a new

algorithm for optimizing the above-mentioned

three hyper-parameters.

III. ALGORITHM FOR HYPER-PARAMETER

OPTIMIZATION OF MCTS

The proposed algorithm is based on the

self-playing capability of MCTS. The competitions

of two copies of MCTS programs with different

settings of hyper-parameters are performed many

times to get a long sequence of winner path. The

winner at current game participates in the next

game. The opponent of the next game is the copy

of MCTS with a new hyper-parameter setting

randomly generated. The algorithm records the

winners during a long sequence of the self-play.

Therefore a long consecutive subsequence of a

winner appearing in the winner path represents a

competitive hyper-parameter combination. The

top-q longest winners are identified in the winner

path and a league among the q winners is

performed as a second round of competition and the

winner in the league is regarded as the final optimal

hyper-parameter.

Algorithm 1 explains the proposed algorithm for

hyper-parameter optimization of MCTS. In lines 2

and 7, three hyper-parameter values are set by

random number generation. In line 6, the winner

survives and participates to the next game.

Algorithm 1: hyper-parameter optimization for

 MCTS

Input: MCTS game program

Output: optimal hyper-parameters

1. winner_path=[]

2. generate two hyper-parameter combinations c1

and c2 using random sampling.

3. while the allowed time remains

4. compete c1 and c2 and decide a winner cw.

5. append cw to winner_path.

6. c1=cw

7. generate one hyper-parameter combination

c2 using random sampling.

8. identify the top-q longest winners in winner_

path.

9. perform a league among q winners and take the

 winner in the league as final output.

In the league of line 9, a pair of winners compete p

times and the winning statistics are recorded in a

q*q table A on which aij means the number of

winning of the winner i against the winner j.

Horizontal sum is calculated and the winner with

the maximum sum is regarded as the winner of q

winners and hyper-parameter values of the winner

is the final output of the algorithm.

IV. m-n-k GAME AS A TESTBED

In our experiment, we use the m-n-k game as a

testbed. The game is played on m*n board and the

player who first put the k consecutive stones

horizontally, vertically, or diagonally wins the game.

The tic-tac-toe is a special case of 3-3-3 game.

The Omok is 15-15-5 game, which is popular in

Asian countries. Fig.2 shows an instance of

mini-sized Omok, 10-10-5 game played by AI

with the stone X against a human with the stone O.

The human is the first mover. At 25th move, the

human won the game.

2020년 12월 스마트미디어저널 39Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

 O win the game!

Fig. 2. An instance of 10-10-5 game played by

AI (X) against human (O)

We implemented MCTS in Python language. No

heuristic rule of the game was implemented in

order to evaluate the performance of the pure

MCTS and to identify the optimal

hyper-parameters of the pure MCTS. The source

code is available at https://github.com/isoh24/

Omok.

V. EXPERIMENTS

Our experiment was performed on 15*15 board,

so 15-15-5 game was used as the testbed

problem. The three hyper-parameters in Table 1

are target for the optimization. They are described

in Section 2.2 in detail. Table 1 presents the range

of values for each hyper-parameter. For λ in Eq.1,

it is usual to use , so we think the range

[0.25,4.0] is reasonable. Regarding the second

hyper-parameter, our preliminary experiment

revealed that two options, w/v and v, coincide with

a high rate. However they chose different child

sometimes, so we regarded it as an important

hyper-parameter to be optimized simultaneously

with other ones. When the computation time doesn’t

matter, the third hyper-parameter can be excluded

in the optimization since a larger value tends to give

a higher accuracy. However in many platforms such

as desktop computer without GPU or smartphone

app, computation time allowed to AI player is

limited in playing the game against a human. So we

add the number of playouts as third

hyper-parameter. Note that the operation of

generating playout consumes most of time in

running the MCTS. The experiment has been done

on a PC with Intel Core i7-8565U CPU (1.80GHz)

and 8GB main memory without any parallel

programming.

Table 1. Three hyper-parameters for the

optimization

Hyper-parameter
(type)

role range

λ in Eq.1
(floating-point)

Control the trade-off
between exploration and

exploitation

[0.25,4.0]

b, criterion for
choosing optimal

child (binary)

Policy using the winning
rate (w/v) or number of

visit (v)

0(w/v) or
1(v)

n, number of
playouts (integer)

Controlling the accuracy
of deciding the winner

[3000,10000]

1. Visualization of winner path

The information visualization is very important in

analyzing how the algorithm works[14,15]. This

section describes a visualization technique for

displaying how our algorithm works. We allowed

the loop of line 3~7 in Algorithm 1 to iterate 120

games and collected the winner path data. Since

one 3D volume illustration makes a mess, Fig.3

presents three combinations of three

hyper-parameters in Table 1. The winner path

starts at the point near the lower right corner

denoted by ‘start’ and ends at the point marked by

‘end’. The number beside the point and the circle

size represent the number of consecutive wins of

the point against other hyper-parameter values.

The point with the highest winning number is

(0.3569,1,9239). It won 44 consecutive games

against other hyper-parameter values.

40 2020년 12월 스마트미디어저널 Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

(a) hyper-parameters

 (λ horizontal axis and n vertical

axis)

(b) hyper-parameters

 (λ horizontal axis and b vertical

axis)

(c) hyper-parameters

(n horizontal axis and b vertical axis)

Fig.3 A winner path generated by Algorithm 1

Table 2 shows the top-4 winners in the winner

path with the values of three hyper-parameters

and survival length. The first winner survives 44

games that is believed to be very competitive. The

fourth winner survived 9 games which is much

lower than the first winner, but are worthy of

getting attention as a competitive winner.

Table 2. Top-4 winners in the winner path of

Fig.3
Rank Winner (λ, b, n) Survival length

(number of winning)

 (0.3569,1,9239) 44

2 (0.2801,0,9973) 13

3 (1.0632,0,6372) 10
4 (1.7969,1,7654) 9

We can observe some patterns in Figure 3(a). The

strong winners belonging to the top-4 are located

at the upper half region in terms of n, meaning that

the higher number of playouts encourages a better

performance. The strong winners are located at the

left half region in terms of λ, meaning that

Algorithm 1 prefers the exploitation. Fig. 3(b) and

Fig.3(c) shows that the more competitive winners

are located on b=1. Algorithm 1 prefers choosing

optimal child with the policy using the number of

visit.

2. League of top-4 winners

The line 9 of Algorithm 1 was run for the top-4

winners in Table 2. In the league, each pair of 4

winners plays 20 games. Since the player taking

the first move is advantageous in m*n*k game, each

of two winners take the first mover for the half of

games for the fairness.

Table 3 shows the 4*4 table A on which aij means

the number of winning of the winner i against the

winner j. The aij consists of two numbers f/g where

f represent the number of winning when i is the

first mover and g the number of winning when j is

the first mover. For example, a12 is 9/5 that means

the winner 1 won 9 games against the winner 2

when the winner 1 is the first mover. The last

column has the horizontal sum. The winner 1 has

the maximum value and it is regarded as the final

winner of 4 winners. Its hyper-parameter value in

Table 2, (0.3569,1,9239) is the final output of the

algorithm.

2020년 12월 스마트미디어저널 41Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

Table 3. Winning rate of top-4
 1 2 3 4 sum
1 - 9/5 8/7 10/7 27/19
2 5/1 - 8/5 10/7 23/13
3 3/2 5/2 - 8/3 16/7
4 3/0 3/0 7/2 - 13/2

VI. Conclusions

This paper proposed a hyper-parameter

optimization method for MCTS that uses the

self-play. By analyzing the winner path, the optimal

hyper-parameter is identified. Using 15-15-5

game as a testbed problem, effectiveness of the

proposed method was shown. One of the future

works is to generate lots of winner paths and to

find out some patterns in them. This future work

will give a better understanding of the proposed

method and eventually leads to a theoretical

justification. Another future work is to apply the

proposed method to other games.

REFERENCES

[1] GyuHyeok Choi and Mijin Kim,

"Analysis of Players’ Eye-Movement

Patterns by Playing Experience in FPS

Game," Smart Media Journal, vol. 5, no.

2, pp.33-41, 2016

[2] Walter, J.C. and Barkema, G.T.,

“An introduction to Monte Carlo

methods,” Physica A:Statistical

Mechanics and its Applications, vol. 418,

pp. 78-87, January 2015

[3] Browne, c., et al., “A survey of

Monte Carlo tree search methods,”
IEEE Transactions on Computational
Intelligence and AI in Games, vol. 4

Issue: 1, pp. 1-43, March 2012

[4] Fu, M.C., “Monte Carlo tree

search: a tutorial,” Proceedings of 2018

Winter Simulation Conference, pp.

222-236, 2018

[5] Brügmann, B., “Monte Carlo Go,

Technical report,” Department of

Physics, Syracuse University, 1993

[6] Coulom, R., “Efficient selectivity

and backup operators in Monte-Carlo

tree search,” 5th International

Conference on Computers and Games,

pp. 72-83, 2006

[7] Silver, D., et al., “Mastering the

game of Go with deep neural networks

and tree search,” Nature 529, pp.

484-489, January 2016

[8] Silver, D., et al., “Mastering the

game of Go without human knowledge,”
Nature 550, pp. 354-359, 2017

[9] Poole, D.L. and Mackworth, A.K.,

“Artificial Intelligence: Foundations of

Computational Agents,” Cambridge

University Press, 2017

[10] Goodfellow, I., Bengio, Y. and

Courville, A., “Deep Learning”, The MIT

Press, 2016

[11] Bergstra, J.S., Bardenet, R.,

“Bengio, Y. and Kegl, B., Algorithms for

hyper-parameter optimization,”
Advances in neural information
processing systems, pp. 2546-2554,

2011

[12] Wang, H, Emmerich, M., Preuss

and M., Plaat, A., “Analysis of

hyper-parameter for small games:

iterations or epochs in self-play?,”
arXiv:2003.05988v1, 2020

[13] Ruijl, B., Vermaseren, J., Plaat, A.

and Herik, J., “Combining simulated

annealing and Monte Carlo Tree Search

for expression simplification,”
Proceedings of the 6th International
Conference on Agents and Artificial

Intelligence, pp. 724–731, 2014

[14] Woo-Jin Joe, Hyo-Jeong Shin

and Hyong-Shik Kim, “A log

visualization method for network

security monitoring,” Smart Media

Journal, vol. 7, no. 4, pp. 70-78, 2018

[15] Dasom Seo, KangHan Oh, Il-Seok

Oh and Tae-Woong Yoo, “Superpixel

Exclusion-Inclusion Multiscale

Approach for Explanations of Deep

Learning,” Smart Media Journal, vol. 8,

no. 2, pp. 39-45, 2019

42 2020년 12월 스마트미디어저널 Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

[16] Li, L., et al., “Hyperband: a novel

bandit-based approach to

hyperparameter optimization,” The

Journal of Machine Learning Research,

vol. 18, no. 1, pp. 1-52, January 2017

[17] Rakotoarison, H., Schoenauer, M.

and Sebag, M., “Automated machine

learning with Monte Carlo tree search,”
IJCAI-19 28th International Joint

Conference on Artificial Intelligence, pp.

3296-3303, Macau, China, Aug. 2019

Authors

Jin-Seon Lee

She received her B.S, M.S

and Ph.D. from Chonbuk

National University, South

Korea. She is currently a

Professor at the Department

of Information and Security, Woosuk

University, Jeonbuk, South Korea. Her

research interests include pattern recognition

and machine learning.

IL-Seok Oh

He received the B.S. degree

in computer engineering

from Seoul National

University, South Korea, in

1984, and the Ph.D. degree

in computer science from KAIST, South Korea,

in 1992. He is currently a Professor with the

Division of Computer Science and Engineering,

Jeonbuk National University, Jeonju, South

Korea. He was a Visiting Scientist with

CENPARMI, Concordia University, Canada, and

UCI, USA. He is the author of the books

Pattern Recognition, Computer Vision, and

Machine Learning (Korean Language). His

research interests include computer vision,

pattern recognition, and machine learning

2020년 12월 스마트미디어저널 43Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322

