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Abstract 
The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It 

has several hyper-parameters that require an optimization for showing the best performance. Due to the 

stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the 

self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a 

winner path over the hyper-parameter space while performing the self-play. The top-q longest winners 

in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in 

Korean name) showed a promising result. 
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I. INTRODUCTION 

 

In game industry, it is not unusual to use pattern 

analysis or machine learning[1]. Many problems of 

machine learning that is impossible or difficult to 

solve using deterministic method uses the Monte 

Carlo method that relies on a stochastic process 

using random number generator[2]. The Monte 

Carlo tree search (MCTS) is one of the most 

famous instance of the Monte Carlo methods in AI. 

The MCTS is a heuristic and stochastic tree search 

algorithm that is used specifically to develop a 

powerful game program[3,4]. Initially the Monte 

Carlo idea applicable to game playing was invented 

under the name of adaptive multi-stage sampling 

(AMS) to make Go program[5]. In 2006, Coulom 

coined the MCTS and developed the Go-playing 

program Crazy Stone[6]. The Deep Mind team took 

the MCTS as an essential idea in developing 

AlphaGo program that defeated world Go champion 

Sedol Lee[7] and in later developing AlphaGo Zero 

that defeated AlphaGo by 100:0[8]. 

In implementing an intelligent game playing 

program, machine learning community has used for 

a long time the minimax tree search algorithm that 

needs a good evaluation function[9]. Unlike the  

minimax that relies on the breadth-first search, 

the MCTS does not need any evaluation function 

and is free from the breadth-first search. The 

computation and memory of the breadth-first 

search increases exponentially as the search depth 

increases. When the branching factor is large, the 

computation becomes infeasible. The branching 

factors of the Go game played on 19*19 board and 

the 15*15*5 game that is used for our experiment 

are 361 and 225, respectively. Due to high 

branching factors of these games and difficulty of 

devising reasonable evaluation functions, the 

traditional minimax algorithm is inapplicable. 

The idea of the MCTS is simple. The core 

operation of the MCTS is to generate lots of 

random playouts and choose the position with the 

highest winning rate as the best move [3,4]. Since 

a playout is made by random choice, the playout 

generation is very fast and enough number of 

playouts can be generated under a time constraint. 

When more playouts are required, parallel 

processing using GPU or multi-core is easily 

applicable since playouts can be generated 

independently. 

Three hyper-parameters should be considered. 
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The playout generation is actually controlled by 

UCT (upper confidence bound applied to trees) that 

balances the exploration and exploitation. The first 

parameter is related to this balancing. The UCT 

equation has a hyper-parameter λ which gives a 

more weight on the exploration when it is large. 

The λ is an important hyper-parameter of MCTS. 

Another hyper-parameter is related to choosing 

the best move. We have two options in choosing the 

best move, taking the move with the highest 

winning rate or the move with the largest number 

of playouts generated. The third hyper-parameter 

is the number of total playouts generated. When 

allowing a more playouts, more accurate estimation 

of the best move is possible while requiring more 

computation time that may violate the game rule 

constraining the time given to each player. These 

three hyper-parameters should be optimized in 

order to obtain the best performance of the 

MCTS-based game programs. 

Generally a machine learning algorithm needs the 

hyper-parameter optimization[10]. It is known that 

the random search is better than the grid search 

[11]. The procedure of the hyper-parameter 

optimization for the classification models such as 

SVM, CNN, and RNN is easy since their learning 

process is deterministic. The only step with a 

stochastic nature is the weight initialization. The 

only difficulty is the large amount of computation 

time due to combinatorial explosion when the 

number of hyper-parameters is large. On the 

contrary, the MCTS has only three 

hyper-parameters, but hyper-parameter 

optimization is difficult since the process of 

choosing the best moves is stochastic. 

Wang et al. proposed a hyper-parameter 

optimization algorithm[12]. They experimented on 

a framework including MCST and other 

functionalities like neural network. Due to the 

complexity of the hyper-parameter optimization, 

they used a very simple 6*6 Othello game. Ruijl et 

al. proposed a hyper-parameter optimization 

algorithm for MCST process[13]. The limitation of 

the work is that only one hyper-parameter 

controlling the exploration and exploitation (λ in 

Eq.1) is optimized.   

This paper proposes a method for optimizing 

simultaneously three hyper-parameters of MCTS. 

The core idea of the proposed method is to use the 

self-playing capability of MCTS-based game 

programs. Two program copies with different 

hyper-parameter settings compete until the winner 

is decided. The winner is recorded in a winner path. 

Then a copy with newly generated 

hyper-parameter setting is made. The last winner 

and the new copy compete until the winner is 

decided. The winner is recorded in the winner path. 

This process is iterated for a long sequence and a 

long winner path is obtained. We regard the 

winners surviving a long subsequence in the winner 

path as the competent hyper-parameter settings. 

The top-q longest subsequences are taken from 

the winner path. They compete each other as a 

second round of competition and the final winner in 

the second round is decided to be the optimal 

hyper-parameter. 

To verify the effectiveness of the proposed 

method, we use the m∗ n∗ k game as testbed 

problem, in which two players takes turn in placing 

their stones like O and X on m∗ n board. The 

winner is the player who first places k consecutive 

stones in a row horizontally, vertically, or 

diagonally. Specifically we used the 15*15*5 game, 

whose Korean name is Omok meaning five stones. 

The experiments showed a promising result that 

identified successfully a competent player with 

optimal hyper-parameter setting. 

 Section 2 explains the MCTS algorithm and three 

hyper-parameters. Section 3 describes our 

proposed algorithm for optimizing three 

hyper-parameters. Section 4 presents m-n-k 

game and Section 5 gives experimental results. 

Section 6 concludes the paper. 

 
II. MCTS ALGORITHM AND HYPER- 

PARAMETERS 

1. Principle of MCTS 

 

When the artificial intelligence (AI) playing a game 

against human takes its turn at a game state, it 

should choose the best move at the state to win the 

game. The state becomes the root R of the search 

tree. The children of R are the possible moves from 

the state and the mission of MCTS is to choose the 

best one among the possible moves. The MCTS 

2020년 12월 스마트미디어저널 37Smart Media Journal / Vol.9, No.4 / ISSN:2287-1322



iterates n times the four steps: selection, expansion, 

simulation, and backpropagation[3,4]. In each of the 

iterations, a playout is generated and the data of the 

nodes in the search tree regarding the number of 

visits and number of winnings are updated using the 

information of the playout. The four steps are 

briefly described as follows. 

 

1. Selection: Starting from R, select successively 

the child nodes until a leaf node L is reached. The 

leaf node is a node where the playout has never 

been started from. The selection is performed 

using the UCT equation that will be later described 

in this section. The UCT-based child selection is 

the core of the MCTS algorithm. 

 

2. Expansion: Among children of L, select 

randomly one of them, which will be denoted as C. 

The node C is created and linked to the parent L 

with downward and upward pointers in order to 

track down and up the tree. Note that the node C 

has two fields storing the number of wins and the 

number of visit. We will denote two fields w/v in 

Fig.1 where w and v represent win and visit, 

respectively. 

 

3. Simulation: Starting from C, a playout is made 

by randomly selecting successively next moves 

until the winner is decided. 

 

4. Backpropagation: Using the playout, update the 

w/v information for the nodes on the upward path 

from C to R. When the O is winner of the playout, 

the nodes corresponding to O’s turn increment both 

of two fields w and v while the nodes for X’s turn 

increment only v. When the X is winner of the 

playout, the nodes corresponding to X’s turn 

increment w and v while the nodes for O’s turn 

increment only v. Fig.1 illustrates a cycle of four 

steps with an example situation. 

 

 

 
 

Fig. 1. Illustration of 4 steps of MCTS 

 

In the selection step, the UCT plays an essential 

role in balancing exploration and exploitation. Eq.1 

is the equation used by UCT. The wi and vi 

represents w and v of i-th child and n is the total 

number of playouts simulated. 

  (1) 

 

The first term  that is the winning rate forces 

the exploitation since a child with a better winning 

rate gets higher value. The second term  

forces the exploration since a child being less 

visited has a lower vi and results in a higher value. 

The weight λ controls which term should influence 

more on the final value. 

2. Optimization of hyper-parameters 

 

Three hype-parameters are found in MCTS 

algorithm. The first one is the weight factor λ in 

UCT equation (1). A large value of λ encourages 

the exploration while a small value weighs the 

exploitation. The usual recommendation is . 

However depending on the game, the optimal value 

may vary. The second hype-parameter is the type 
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of choosing the best move. Two options are 

available, one choosing the child with the highest 

winning rate, i.e., highest w/v and the other with the 

highest visits, i.e., highest v. The third 

hyper-parameter is the number of playout 

simulation. The more the playout is generated, the 

more accurately the best move is chosen. However 

more playouts result in more computation time that 

might violate the game rule of time constraint. 

Optimization of hyper-parameters in machine 

learning is crucial for getting the optimal 

performance. Two strategies are usually used; grid 

search and random search. The grid search divides 

each hyper-parameter in equal intervals or 

logarithmic intervals. The grid search evaluates 

each of combinations of hyper-parameters and 

choose the best combination as optimal value of 

hyper-parameters. The random search iterates the 

generation and evaluation of a random combination 

until the allowed computation time is exhausted. 

Bergstra’s extensive experiments showed a 

superiority of the random search[11]. 

The existing algorithms for optimizing 

hyper-parameters including Bergstra’s study work 

only for the deterministic learning situations. The 

MCTS works stochastically, so we need a new 

algorithm for optimizing the above-mentioned 

three hyper-parameters. 

 

 

III. ALGORITHM FOR HYPER-PARAMETER 

OPTIMIZATION OF MCTS  

 

The proposed algorithm is based on the 

self-playing capability of MCTS. The competitions 

of two copies of MCTS programs with different 

settings of hyper-parameters are performed many 

times to get a long sequence of winner path. The 

winner at current game participates in the next 

game. The opponent of the next game is the copy 

of MCTS with a new hyper-parameter setting 

randomly generated. The algorithm records the 

winners during a long sequence of the self-play. 

Therefore a long consecutive subsequence of a 

winner appearing in the winner path represents a 

competitive hyper-parameter combination. The 

top-q longest winners are identified in the winner 

path and a league among the q winners is 

performed as a second round of competition and the 

winner in the league is regarded as the final optimal 

hyper-parameter. 

Algorithm 1 explains the proposed algorithm for 

hyper-parameter optimization of MCTS. In lines 2 

and 7, three hyper-parameter values are set by 

random number generation. In line 6, the winner 

survives and participates to the next game. 

 

 

Algorithm 1: hyper-parameter optimization for 

 MCTS 

Input: MCTS game program 

Output: optimal hyper-parameters 

1. winner_path=[ ] 

2. generate two hyper-parameter combinations c1  

and c2 using random sampling. 

3. while the allowed time remains 

4.    compete c1 and c2 and decide a winner cw. 

5.    append cw to winner_path. 

6.    c1=cw 

7.    generate one hyper-parameter combination  

c2 using random sampling. 

8. identify the top-q longest winners in winner_ 

path. 

9. perform a league among q winners and take the 

 winner in the league as final output. 

 

In the league of line 9, a pair of winners compete p 

times and the winning statistics are recorded in a 

q*q table A on which aij means the number of 

winning of the winner i against the winner j. 

Horizontal sum is calculated and the winner with 

the maximum sum is regarded as the winner of q 

winners and hyper-parameter values of the winner 

is the final output of the algorithm. 

 

IV. m-n-k GAME AS A TESTBED 

 

In our experiment, we use the m-n-k game as a 

testbed. The game is played on m*n board and the 

player who first put the k consecutive stones 

horizontally, vertically, or diagonally wins the game. 

The tic-tac-toe is a special case of 3-3-3 game. 

The Omok is 15-15-5 game, which is popular in 

Asian countries. Fig.2 shows an instance of 

mini-sized Omok, 10-10-5 game played by AI 

with the stone X against a human with the stone O. 

The human is the first mover. At 25th move, the 

human won the game. 
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 O win the game! 

 

Fig. 2. An instance of 10-10-5 game played by 

AI (X) against human (O) 

 

We implemented MCTS in Python language. No 

heuristic rule of the game was implemented in 

order to evaluate the performance of the pure 

MCTS and to identify the optimal 

hyper-parameters of the pure MCTS. The source 

code is available at https://github.com/isoh24/ 

Omok. 

 

V. EXPERIMENTS 

 

Our experiment was performed on 15*15 board, 

so 15-15-5 game was used as the testbed 

problem. The three hyper-parameters in Table 1 

are target for the optimization. They are described 

in Section 2.2 in detail. Table 1 presents the range 

of values for each hyper-parameter. For λ in Eq.1, 

it is usual to use , so we think the range 

[0.25,4.0] is reasonable. Regarding the second 

hyper-parameter, our preliminary experiment 

revealed that two options, w/v and v, coincide with 

a high rate. However they chose different child 

sometimes, so we regarded it as an important 

hyper-parameter to be optimized simultaneously 

with other ones. When the computation time doesn’t 

matter, the third hyper-parameter can be excluded 

in the optimization since a larger value tends to give 

a higher accuracy. However in many platforms such 

as desktop computer without GPU or smartphone 

app, computation time allowed to AI player is 

limited in playing the game against a human. So we 

add the number of playouts as third 

hyper-parameter. Note that the operation of 

generating playout consumes most of time in 

running the MCTS. The experiment has been done 

on a PC with Intel Core i7-8565U CPU (1.80GHz) 

and 8GB main memory without any parallel 

programming. 

 

Table 1. Three hyper-parameters for the 

optimization 

Hyper-parameter 
(type) 

role range 

λ in Eq.1 
(floating-point) 

Control the trade-off 
between exploration and 

exploitation 

[0.25,4.0] 

b, criterion for 
choosing optimal 

child (binary) 

Policy using the winning 
rate (w/v) or number of 

visit (v) 

0(w/v) or 
1(v) 

n, number of 
playouts (integer) 

Controlling the accuracy 
of deciding the winner 

[3000,10000] 

1. Visualization of winner path 

 

The information visualization is very important in 

analyzing how the algorithm works[14,15]. This 

section describes a visualization technique for 

displaying how our algorithm works. We allowed 

the loop of line 3~7 in Algorithm 1 to iterate 120 

games and collected the winner path data. Since 

one 3D volume illustration makes a mess, Fig.3 

presents three combinations of three 

hyper-parameters in Table 1. The winner path 

starts at the point near the lower right corner 

denoted by ‘start’ and ends at the point marked by 

‘end’. The number beside the point and the circle 

size represent the number of consecutive wins of 

the point against other hyper-parameter values. 

The point with the highest winning number is 

(0.3569,1,9239). It won 44 consecutive games 

against other hyper-parameter values. 
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(a) hyper-parameters 

           (λ horizontal axis and n vertical 

axis) 

 
 

(b) hyper-parameters 

                (λ horizontal axis and b vertical 

axis) 

 
 

(c) hyper-parameters 

(n horizontal axis and b vertical axis) 

 

Fig.3 A winner path generated by Algorithm 1 

 

Table 2 shows the top-4 winners in the winner 

path with the values of three hyper-parameters 

and survival length. The first winner survives 44 

games that is believed to be very competitive. The 

fourth winner survived 9 games which is much 

lower than the first winner, but are worthy of 

getting attention as a competitive winner. 

 

Table 2. Top-4 winners in the winner path of 

Fig.3 
Rank Winner (λ, b, n) Survival length  

(number of winning) 

 (0.3569,1,9239) 44 

2 (0.2801,0,9973) 13 

3 (1.0632,0,6372) 10 
4 (1.7969,1,7654) 9 

 

We can observe some patterns in Figure 3(a). The 

strong winners belonging to the top-4 are located 

at the upper half region in terms of n, meaning that 

the higher number of playouts encourages a better 

performance. The strong winners are located at the 

left half region in terms of λ, meaning that 

Algorithm 1 prefers the exploitation. Fig. 3(b) and 

Fig.3(c) shows that the more competitive winners 

are located on b=1. Algorithm 1 prefers choosing 

optimal child with the policy using the number of 

visit. 

2. League of top-4 winners 

 

The line 9 of Algorithm 1 was run for the top-4 

winners in Table 2. In the league, each pair of 4 

winners plays 20 games. Since the player taking 

the first move is advantageous in m*n*k game, each 

of two winners take the first mover for the half of 

games for the fairness.  

Table 3 shows the 4*4 table A on which aij means 

the number of winning of the winner i against the 

winner j. The aij consists of two numbers f/g where 

f represent the number of winning when i is the 

first mover and g the number of winning when j is 

the first mover. For example, a12 is 9/5 that means 

the winner 1 won 9 games against the winner 2 

when the winner 1 is the first mover. The last 

column has the horizontal sum. The winner 1 has 

the maximum value and it is regarded as the final 

winner of 4 winners. Its hyper-parameter value in 

Table 2, (0.3569,1,9239) is the final output of the 

algorithm. 
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Table 3. Winning rate of top-4 
 1 2 3 4 sum 
1 - 9/5 8/7 10/7 27/19 
2 5/1 - 8/5 10/7 23/13 
3 3/2 5/2 - 8/3 16/7 
4 3/0 3/0 7/2 - 13/2 

 
VI. Conclusions 

 

This paper proposed a hyper-parameter 

optimization method for MCTS that uses the 

self-play. By analyzing the winner path, the optimal 

hyper-parameter is identified. Using 15-15-5 

game as a testbed problem, effectiveness of the 

proposed method was shown. One of the future 

works is to generate lots of winner paths and to 

find out some patterns in them. This future work 

will give a better understanding of the proposed 

method and eventually leads to a theoretical 

justification. Another future work is to apply the 

proposed method to other games. 
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